Suppr超能文献

树突棘内分子扩散在突触功能中的作用。

The role of molecular diffusion within dendritic spines in synaptic function.

机构信息

Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD.

Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

出版信息

J Gen Physiol. 2021 Apr 5;153(4). doi: 10.1085/jgp.202012814.

Abstract

Spines are tiny nanoscale protrusions from dendrites of neurons. In the cortex and hippocampus, most of the excitatory postsynaptic sites reside in spines. The bulbous spine head is connected to the dendritic shaft by a thin membranous neck. Because the neck is narrow, spine heads are thought to function as biochemically independent signaling compartments. Thus, dynamic changes in the composition, distribution, mobility, conformations, and signaling properties of molecules contained within spines can account for much of the molecular basis of postsynaptic function and regulation. A major factor in controlling these changes is the diffusional properties of proteins within this small compartment. Advances in measurement techniques using fluorescence microscopy now make it possible to measure molecular diffusion within single dendritic spines directly. Here, we review the regulatory mechanisms of diffusion in spines by local intra-spine architecture and discuss their implications for neuronal signaling and synaptic plasticity.

摘要

棘突是神经元树突上的微小纳米级突起。在大脑皮层和海马体中,大多数兴奋性突触后位点都位于棘突中。球状棘突头部通过细的膜状颈部与树突干相连。由于颈部狭窄,棘突头部被认为是具有生化独立性的信号隔室。因此,包含在棘突内的分子的组成、分布、流动性、构象和信号转导特性的动态变化可以解释突触后功能和调节的大部分分子基础。控制这些变化的一个主要因素是这个小隔室内蛋白质的扩散特性。使用荧光显微镜的测量技术的进步现在使得可以直接测量单个树突棘突内的分子扩散。在这里,我们通过局部棘突内结构来综述扩散的调节机制,并讨论其对神经元信号转导和突触可塑性的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e23/7967910/6ebd50406e32/JGP_202012814_Fig1.jpg

相似文献

1
The role of molecular diffusion within dendritic spines in synaptic function.
J Gen Physiol. 2021 Apr 5;153(4). doi: 10.1085/jgp.202012814.
2
Imaging of spine synapses using super-resolution microscopy.
Anat Sci Int. 2021 Jun;96(3):343-358. doi: 10.1007/s12565-021-00603-0. Epub 2021 Jan 18.
3
βIII Spectrin Is Necessary for Formation of the Constricted Neck of Dendritic Spines and Regulation of Synaptic Activity in Neurons.
J Neurosci. 2017 Jul 5;37(27):6442-6459. doi: 10.1523/JNEUROSCI.3520-16.2017. Epub 2017 Jun 2.
4
Neuronal activity regulates diffusion across the neck of dendritic spines.
Science. 2005 Nov 4;310(5749):866-9. doi: 10.1126/science.1114816.
5
Ultrastructural analysis of dendritic spine necks reveals a continuum of spine morphologies.
Dev Neurobiol. 2021 Jul;81(5):746-757. doi: 10.1002/dneu.22829. Epub 2021 May 30.
6
Postsynaptic signaling during plasticity of dendritic spines.
Trends Neurosci. 2012 Feb;35(2):135-43. doi: 10.1016/j.tins.2011.12.002. Epub 2012 Jan 3.
7
Dendritic spine plasticity: looking beyond development.
Brain Res. 2007 Dec 12;1184:65-71. doi: 10.1016/j.brainres.2006.02.094. Epub 2006 Apr 5.
8
Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders.
Psychiatry Clin Neurosci. 2019 Sep;73(9):541-550. doi: 10.1111/pcn.12899. Epub 2019 Jul 8.
9
Molecular mechanisms of dendritic spine development and remodeling.
Prog Neurobiol. 2005 Feb;75(3):161-205. doi: 10.1016/j.pneurobio.2005.02.003. Epub 2005 Apr 2.

引用本文的文献

2
Introduction: What Are Dendritic Spines?
Adv Neurobiol. 2023;34:1-68. doi: 10.1007/978-3-031-36159-3_1.
3
Unraveling the mysteries of dendritic spine dynamics: Five key principles shaping memory and cognition.
Proc Jpn Acad Ser B Phys Biol Sci. 2023;99(8):254-305. doi: 10.2183/pjab.99.018.
5
Trafficking proteins show limited differences in mobility across different postsynaptic spines.
iScience. 2023 Jan 13;26(2):105971. doi: 10.1016/j.isci.2023.105971. eCollection 2023 Feb 17.
6
A Uniform and Isotropic Cytoskeletal Tiling Fills Dendritic Spines.
eNeuro. 2022 Oct 27;9(5). doi: 10.1523/ENEURO.0342-22.2022. Print 2022 Sep-Oct.
7
Post-Synapses in the Brain: Role of Dendritic and Spine Structures.
Biomedicines. 2022 Aug 2;10(8):1859. doi: 10.3390/biomedicines10081859.
9
Imaging Synaptic Density: The Next Holy Grail of Neuroscience?
Front Neurosci. 2022 Mar 25;16:796129. doi: 10.3389/fnins.2022.796129. eCollection 2022.
10
Autoregulation of switching behavior by cellular compartment size.
Proc Natl Acad Sci U S A. 2022 Apr 5;119(14):e2116054119. doi: 10.1073/pnas.2116054119. Epub 2022 Mar 29.

本文引用的文献

1
Applications and Challenges of Machine Learning to Enable Realistic Cellular Simulations.
Front Phys. 2020 Jan;7. doi: 10.3389/fphy.2019.00247. Epub 2020 Jan 21.
2
Structure and function of a neocortical synapse.
Nature. 2021 Mar;591(7848):111-116. doi: 10.1038/s41586-020-03134-2. Epub 2021 Jan 13.
3
Click-ExM enables expansion microscopy for all biomolecules.
Nat Methods. 2021 Jan;18(1):107-113. doi: 10.1038/s41592-020-01005-2. Epub 2020 Dec 7.
5
My Neighbour Hetero-deconstructing the mechanisms underlying heterosynaptic plasticity.
Curr Opin Neurobiol. 2021 Apr;67:106-114. doi: 10.1016/j.conb.2020.10.007. Epub 2020 Nov 4.
6
Regulation of actin dynamics in dendritic spines: Nanostructure, molecular mobility, and signaling mechanisms.
Mol Cell Neurosci. 2020 Dec;109:103564. doi: 10.1016/j.mcn.2020.103564. Epub 2020 Oct 20.
7
Endoplasmic reticulum visits highly active spines and prevents runaway potentiation of synapses.
Nat Commun. 2020 Oct 8;11(1):5083. doi: 10.1038/s41467-020-18889-5.
8
Quantitative Synaptic Biology: A Perspective on Techniques, Numbers and Expectations.
Int J Mol Sci. 2020 Oct 2;21(19):7298. doi: 10.3390/ijms21197298.
9
A spike-timing-dependent plasticity rule for dendritic spines.
Nat Commun. 2020 Aug 26;11(1):4276. doi: 10.1038/s41467-020-17861-7.
10
Molecular Crowding and Diffusion-Capture in Synapses.
iScience. 2020 Aug 21;23(8):101382. doi: 10.1016/j.isci.2020.101382. Epub 2020 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验