Suppr超能文献

胰腺癌、慢性胰腺炎和自身免疫性胰腺炎患者血清中的新型自身抗体特征:一种蛋白质微阵列分析方法。

Novel Autoantibody Signatures in Sera of Patients with Pancreatic Cancer, Chronic Pancreatitis and Autoimmune Pancreatitis: A Protein Microarray Profiling Approach.

机构信息

Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany.

Department of Biochemistry, University of Lausanne, 1066 Epalinges-Lausanne, Switzerland.

出版信息

Int J Mol Sci. 2020 Mar 31;21(7):2403. doi: 10.3390/ijms21072403.

Abstract

Identification of disease-associated autoantibodies is of high importance. Their assessment could complement current diagnostic modalities and assist the clinical management of patients. We aimed at developing and validating high-throughput protein microarrays able to screen patients' sera to determine disease-specific autoantibody-signatures for pancreatic cancer (PDAC), chronic pancreatitis (CP), autoimmune pancreatitis and their subtypes (AIP-1 and AIP-2). In-house manufactured microarrays were used for autoantibody-profiling of IgG-enriched preoperative sera from PDAC-, CP-, AIP-1-, AIP-2-, other gastrointestinal disease (GID) patients and healthy controls. As a top-down strategy, three different fluorescence detection-based protein-microarrays were used: large with 6400, intermediate with 345, and small with 36 full-length human recombinant proteins. Large-scale analysis revealed 89 PDAC, 98 CP and 104 AIP immunogenic antigens. Narrowing the selection to 29 autoantigens using pooled sera first and individual sera afterwards allowed a discrimination of CP and AIP from PDAC. For validation, predictive models based on the identified antigens were generated which enabled discrimination between PDAC and AIP-1 or AIP-2 yielded high AUC values of 0.940 and 0.925, respectively. A new repertoire of autoantigens was identified and their assembly as a multiplex test will provide a fast and cost-effective tool for differential diagnosis of pancreatic diseases with high clinical relevance.

摘要

鉴定与疾病相关的自身抗体非常重要。它们的评估可以补充当前的诊断方式,并有助于患者的临床管理。我们旨在开发和验证高通量蛋白质微阵列,能够筛选患者的血清,以确定胰腺癌(PDAC)、慢性胰腺炎(CP)、自身免疫性胰腺炎及其亚型(AIP-1 和 AIP-2)的疾病特异性自身抗体特征。内部制造的微阵列用于对 PDAC、CP、AIP-1、AIP-2、其他胃肠道疾病(GID)患者和健康对照者的术前 IgG 浓缩血清进行自身抗体分析。作为一种自上而下的策略,我们使用了三种不同的基于荧光检测的蛋白质微阵列:大型(6400 个)、中型(345 个)和小型(36 个全长人重组蛋白)。大规模分析揭示了 89 个 PDAC、98 个 CP 和 104 个 AIP 免疫原性抗原。首先使用混合血清,然后使用个体血清缩小选择范围至 29 个自身抗原,从而可以区分 CP 和 AIP 与 PDAC。为了验证,我们基于鉴定的抗原生成了预测模型,这些模型能够区分 PDAC 和 AIP-1 或 AIP-2,其 AUC 值分别高达 0.940 和 0.925。我们鉴定了一套新的自身抗原,将它们组装成一个多重测试将为具有高度临床相关性的胰腺疾病的鉴别诊断提供快速且具有成本效益的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc57/7177860/7bb15030e506/ijms-21-02403-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验