Suppr超能文献

基于多媒体网络中属性和值级别的高效属性基访问控制 (ABAC) 策略检索方法。

An Efficient Attribute-Based Access Control (ABAC) Policy Retrieval Method Based on Attribute and Value Levels in Multimedia Networks.

机构信息

State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing 100024, China.

School of Information and Communication Engineering, Communication University of China, Beijing 100024, China.

出版信息

Sensors (Basel). 2020 Mar 20;20(6):1741. doi: 10.3390/s20061741.

Abstract

Internet of Multimedia Things (IoMT) brings convenient and intelligent services while also bringing huge challenges to multimedia data security and privacy. Access control is used to protect the confidentiality and integrity of restricted resources. Attribute-Based Access Control (ABAC) implements fine-grained control of resources in an open heterogeneous IoMT environment. However, due to numerous users and policies in ABAC, access control policy evaluation is inefficient, which affects the quality of multimedia application services in the Internet of Things (IoT). This paper proposed an efficient policy retrieval method to improve the performance of access control policy evaluation in multimedia networks. First, retrieve policies that satisfy the request at the attribute level by computing based on the binary identifier. Then, at the attribute value level, the depth index was introduced to reconstruct the policy decision tree, thereby improving policy retrieval efficiency. This study carried out simulation experiments in terms of the different number of policies and different policy complexity situation. The results showed that the proposed method was three to five times more efficient in access control policy evaluation and had stronger scalability.

摘要

物联网多媒体(IoMT)在带来便捷和智能服务的同时,也给多媒体数据安全和隐私带来了巨大挑战。访问控制用于保护受限资源的机密性和完整性。基于属性的访问控制(ABAC)在开放的异构 IoMT 环境中实现了对资源的细粒度控制。然而,由于 ABAC 中存在大量用户和策略,访问控制策略评估效率不高,这影响了物联网中多媒体应用服务的质量。本文提出了一种高效的策略检索方法,以提高多媒体网络中访问控制策略评估的性能。首先,通过基于二进制标识符的计算来在属性级别上检索满足请求的策略。然后,在属性值级别上,引入深度索引来重构策略决策树,从而提高策略检索效率。本研究针对不同数量的策略和不同的策略复杂性情况进行了仿真实验。结果表明,所提出的方法在访问控制策略评估方面的效率提高了三到五倍,并且具有更强的可扩展性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6114/7147467/343bd93eb5b9/sensors-20-01741-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验