Yang Yu, Zhu Wenjun, Cheng Liang, Cai Ren, Yi Xuan, He Jiaxuan, Pan Xiaoshu, Yang Lu, Yang Kai, Liu Zhuang, Tan Weihong, Chen Meiwan
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau; Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA.
Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
Biomaterials. 2020 Jul;246:119971. doi: 10.1016/j.biomaterials.2020.119971. Epub 2020 Mar 14.
Photodynamic therapy (PDT) is an effective and noninvasive therapeutic strategy employing light-triggered singlet oxygen (SO) and reactive oxygen species (ROS) to kill lesional cells. However, for effective in vivo delivery of PDT agent into the cancer cells, various biological obstacles including blood circulation and condense extracellular matrix (ECM) in the tumor microenvironment (TME) need to be overcome. Furthermore, the enormous challenge in design of smart drug delivery systems is meeting the difference, even contradictory required functions, in different steps of the complicated delivery process. To this end, we present that TME-activatable circular pyrochlorophyll A (PA)-aptamer-PEG (PA-Apt-CHO-PEG) nanostructures, which combine the advantages of PEG and aptamer, would be able to realize efficient in vivo imaging and PDT. Upon intravenous (i.v.) injection, PA-Apt-CHO-PEG shows "stealth-like" long circulation in blood compartments without specific recognition capacity, but once inside solid tumor, PA-Apt-CHO-PEG nanostructures are cleaved and then form PA-Apt Aptamer-drug conjugations (ApDCs) in situ, allowing deep penetration into the solid tumor and specific recognition of cancer cells, both merits, considering anticipated future clinical translation of ApDCs.
光动力疗法(PDT)是一种有效且非侵入性的治疗策略,它利用光触发单线态氧(SO)和活性氧(ROS)来杀死病变细胞。然而,为了将PDT药物有效地递送至体内癌细胞,需要克服各种生物学障碍,包括血液循环以及肿瘤微环境(TME)中致密的细胞外基质(ECM)。此外,设计智能药物递送系统面临的巨大挑战在于,要满足复杂递送过程中不同步骤的差异甚至相互矛盾的功能要求。为此,我们提出,结合了聚乙二醇(PEG)和适配体优势的TME可激活的环状焦脱镁叶绿酸A(PA)-适配体-聚乙二醇(PA-Apt-CHO-PEG)纳米结构,将能够实现高效的体内成像和PDT。静脉注射后,PA-Apt-CHO-PEG在血液中呈现“类隐形”的长循环,且无特异性识别能力,但一旦进入实体瘤内,PA-Apt-CHO-PEG纳米结构就会被裂解,然后原位形成PA-Apt适配体-药物缀合物(ApDCs),从而能够深入实体瘤并特异性识别癌细胞,考虑到ApDCs未来预期的临床转化,这两点均具有优势。