Suppr超能文献

利用存在/缺失数据估计熟肉制品中单核细胞增生李斯特菌浓度的概率模型。

Probabilistic model for estimating Listeria monocytogenes concentration in cooked meat products from presence/absence data.

机构信息

School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200024, China.

School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

出版信息

Food Res Int. 2020 May;131:109040. doi: 10.1016/j.foodres.2020.109040. Epub 2020 Jan 27.

Abstract

A quantitative probabilistic model was developed to estimate the concentration of Listeria monocytogenes in cooked meat products based on presence/absence data and an assumed zero-inflated distribution, i.e. zero-inflated Poisson (ZIP) or zero-inflated Poisson lognormal (ZIPL) distribution. The performance of these two distributions was compared in two data sets (data set A and B), which represented L. monocytogenes prevalence and concentrations in cooked meat products. In this study, L. monocytogenes contamination data consisted of 4.23% (8/189) and 4.17% (5/120) non-zero counts for data set A and B, respectively. The contamination level of L. monocytogenes, determined by the most probable number (MPN) technique, ranged from 3 to 93 MPN/g among 13 positive samples. The goodness-of-fit test indicated that the ZIPL distribution was better than the simpler ZIP distribution, when L. monocytogenes contamination levels on positive cooked meat samples illustrated large heterogeneity. Results obtained from ZIPL distribution showed that the logarithmic mean value of L. monocytogenes positive samples was 1.5 log MPN/g (log σ = 0.4) for data set A and B. This study provides an alternative probabilistic method when only qualitative data is available in Quantitative microbial risk assessment (QMRA), in particular if pathogen concentrations consist of large numbers of zero counts and represent high variability.

摘要

建立了一个定量概率模型,基于存在/缺失数据和假设的零膨胀分布(即零膨胀泊松分布(ZIP)或零膨胀泊松对数正态分布(ZIPL))来估计熟肉产品中单核细胞增生李斯特菌的浓度。在两个数据集(数据集 A 和 B)中比较了这两种分布的性能,这些数据集代表了熟肉产品中单核细胞增生李斯特菌的流行率和浓度。在这项研究中,单核细胞增生李斯特菌污染数据分别由数据集 A 和 B 中的 4.23%(8/189)和 4.17%(5/120)非零计数组成。通过最可能数(MPN)技术确定的单核细胞增生李斯特菌污染水平在 13 个阳性样本中从 3 到 93 MPN/g 不等。拟合优度检验表明,当阳性熟肉样品中的单核细胞增生李斯特菌污染水平表现出较大的异质性时,ZIPL 分布优于更简单的 ZIP 分布。ZIPL 分布得到的结果表明,对于数据集 A 和 B,单核细胞增生李斯特菌阳性样品的对数平均值为 1.5 log MPN/g(log σ=0.4)。本研究在定量微生物风险评估(QMRA)中仅提供定性数据时提供了一种替代的概率方法,特别是当病原体浓度包含大量零计数并表现出高度可变性时。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验