Suppr超能文献

临床无标记生物化学和代谢荧光寿命内窥式成像术在癌前病变和癌症口腔病变中的应用。

Clinical label-free biochemical and metabolic fluorescence lifetime endoscopic imaging of precancerous and cancerous oral lesions.

机构信息

Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.

Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar.

出版信息

Oral Oncol. 2020 Jun;105:104635. doi: 10.1016/j.oraloncology.2020.104635. Epub 2020 Apr 2.

Abstract

INTRODUCTION

Incomplete head and neck cancer resection occurs in up to 85% of cases, leading to increased odds of local recurrence and regional metastases; thus, image-guided surgical tools for accurate, in situ and fast detection of positive margins during head and neck cancer resection surgery are urgently needed. Oral epithelial dysplasia and cancer development is accompanied by morphological, biochemical, and metabolic tissue and cellular alterations that can modulate the autofluorescence properties of the oral epithelial tissue.

OBJECTIVE

This study aimed to test the hypothesis that autofluorescence biomarkers of oral precancer and cancer can be clinically imaged and quantified by means of multispectral fluorescence lifetime imaging (FLIM) endoscopy.

METHODS

Multispectral autofluorescence lifetime images of precancerous and cancerous lesions from 39 patients were imaged in vivo using a novel multispectral FLIM endoscope and processed to generate widefield maps of biochemical and metabolic autofluorescence biomarkers of oral precancer and cancer.

RESULTS

Statistical analyses applied to the quantified multispectral FLIM endoscopy based autofluorescence biomarkers indicated their potential to provide contrast between precancerous/cancerous vs. healthy oral epithelial tissue.

CONCLUSION

To the best of our knowledge, this study represents the first demonstration of label-free biochemical and metabolic clinical imaging of precancerous and cancerous oral lesions by means of widefield multispectral autofluorescence lifetime endoscopy. Future studies will focus on demonstrating the capabilities of endogenous multispectral FLIM endoscopy as an image-guided surgical tool for positive margin detection during head and neck cancer resection surgery.

摘要

简介

头颈部癌症切除术的不完全切除发生率高达 85%,这增加了局部复发和区域转移的可能性;因此,迫切需要图像引导手术工具,以便在头颈部癌症切除手术中准确、原位和快速地检测阳性边缘。口腔上皮异型增生和癌症的发展伴随着形态、生化和代谢组织以及细胞的改变,这些改变可以调节口腔上皮组织的自发荧光特性。

目的

本研究旨在验证假设,即口腔癌前病变和癌症的自发荧光生物标志物可以通过多光谱荧光寿命成像(FLIM)内窥镜进行临床成像和定量。

方法

使用新型多光谱 FLIM 内窥镜对 39 名患者的癌前病变和癌症病变进行多光谱自发荧光寿命成像,并对其进行处理,以生成口腔癌前病变和癌症的生化和代谢自发荧光生物标志物的宽场图谱。

结果

应用于定量多光谱 FLIM 内窥镜的统计分析表明,这些基于自发荧光的生物标志物具有在癌前病变/癌症与健康口腔上皮组织之间提供对比的潜力。

结论

据我们所知,本研究首次通过宽场多光谱自发荧光寿命内窥镜证明了对癌前和癌症口腔病变进行无标记生化和代谢临床成像的能力。未来的研究将集中于证明内源性多光谱 FLIM 内窥镜作为头颈部癌症切除术中阳性边缘检测的图像引导手术工具的能力。

相似文献

1
Clinical label-free biochemical and metabolic fluorescence lifetime endoscopic imaging of precancerous and cancerous oral lesions.
Oral Oncol. 2020 Jun;105:104635. doi: 10.1016/j.oraloncology.2020.104635. Epub 2020 Apr 2.
4
Endogenous Fluorescence Lifetime Imaging (FLIM) Endoscopy For Early Detection Of Oral Cancer And Dysplasia.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:3009-3012. doi: 10.1109/EMBC.2018.8513027.
5
[Endoscopic imaging techniques in the diagnosis of laryngeal carcinoma and its precursor lesions].
Laryngorhinootologie. 1999 Dec;78(12):685-91. doi: 10.1055/s-1999-8775.
6
Endoscopic fluorescence lifetime imaging for in vivo intraoperative diagnosis of oral carcinoma.
Microsc Microanal. 2013 Aug;19(4):791-8. doi: 10.1017/S1431927613001530. Epub 2013 May 23.
7
Autofluorescence videoendoscopy for photodiagnosis of head and neck squamous cell carcinoma.
Eur Arch Otorhinolaryngol. 2003 Nov;260(10):544-8. doi: 10.1007/s00405-003-0635-6. Epub 2003 May 28.
8
Objective Detection of Oral Carcinoma with Multispectral Fluorescence Lifetime Imaging In Vivo.
Photochem Photobiol. 2016 Sep;92(5):694-701. doi: 10.1111/php.12627. Epub 2016 Sep 7.

引用本文的文献

1
FLIMB: fluorescence lifetime microendoscopy for metabolic and functional imaging of femoral marrow at subcellular resolution.
Biomed Opt Express. 2025 Mar 31;16(4):1711-1731. doi: 10.1364/BOE.549311. eCollection 2025 Apr 1.
2
Perspective on the use of fluorescence molecular imaging for peripheral and deep margin assessment.
J Biomed Opt. 2025 Jan;30(Suppl 1):S13711. doi: 10.1117/1.JBO.30.S1.S13711. Epub 2025 May 2.
4
Multidimensional quantitative characterization of basal cell carcinoma by spectral- and time-resolved two-photon microscopy.
Nanophotonics. 2024 Jan 12;13(2):217-227. doi: 10.1515/nanoph-2023-0722. eCollection 2024 Jan.
6
Pixel-level classification of pigmented skin cancer lesions using multispectral autofluorescence lifetime dermoscopy imaging.
Biomed Opt Express. 2024 Jul 9;15(8):4557-4583. doi: 10.1364/BOE.523831. eCollection 2024 Aug 1.
7
Fluorescence lifetime imaging with distance and ranging using a miniaturised SPAD system.
Sci Rep. 2024 Jun 10;14(1):13285. doi: 10.1038/s41598-024-63409-w.
10
Multidimensional quantitative characterization of the tumor microenvironment by multicontrast nonlinear microscopy.
Biomed Opt Express. 2022 Sep 29;13(10):5517-5532. doi: 10.1364/BOE.470104. eCollection 2022 Oct 1.

本文引用的文献

1
Surgical margins in oral cavity squamous cell carcinoma: Current practices and future directions.
Laryngoscope. 2020 Jan;130(1):128-138. doi: 10.1002/lary.27943. Epub 2019 Apr 26.
2
Synchronous Luminescence Spectroscopy as a Tool in the Discrimination and Characterization of Oral Cancer Tissue.
J Fluoresc. 2019 Mar;29(2):361-367. doi: 10.1007/s10895-018-02343-3. Epub 2019 Jan 23.
3
Two-channel autofluorescence analysis for oral cancer.
J Biomed Opt. 2018 Nov;24(5):1-10. doi: 10.1117/1.JBO.24.5.051402.
5
Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
Antioxid Redox Signal. 2019 Feb 20;30(6):875-889. doi: 10.1089/ars.2017.7451. Epub 2018 Jan 30.
6
Optically sectioned wide-field fluorescence lifetime imaging microscopy enabled by structured illumination.
Biomed Opt Express. 2017 Feb 8;8(3):1455-1465. doi: 10.1364/BOE.8.001455. eCollection 2017 Mar 1.
7
Intraoperative gross examination vs frozen section for achievement of adequate margin in oral cancer surgery.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2017 May;123(5):544-549. doi: 10.1016/j.oooo.2016.11.018. Epub 2016 Dec 7.
8
Metabolic Imaging of Head and Neck Cancer Organoids.
PLoS One. 2017 Jan 18;12(1):e0170415. doi: 10.1371/journal.pone.0170415. eCollection 2017.
9
An in vitro diagnosis of oral premalignant lesion using time-resolved fluorescence spectroscopy under UV excitation-a pilot study.
Photodiagnosis Photodyn Ther. 2016 Jun;14:18-24. doi: 10.1016/j.pdpdt.2016.02.002. Epub 2016 Feb 4.
10
Resection margins in oral cancer surgery: Room for improvement.
Head Neck. 2016 Apr;38 Suppl 1:E2197-203. doi: 10.1002/hed.24075. Epub 2015 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验