Naciri Y, Hsini A, Ajmal Z, Bouddouch A, Bakiz B, Navío J A, Albourine A, Valmalette J-C, Ezahri M, Benlhachemi A
Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Morocco.
College of Engineering, China Agricultural University, 100083 Beijing, PR China.
J Colloid Interface Sci. 2020 Jul 15;572:269-280. doi: 10.1016/j.jcis.2020.03.105. Epub 2020 Mar 29.
Well-crystallized Ca(PO) doped and un-doped nano-particles with the maximum strontium content (40 wt% Sr) followed by calcination at 800 °C for 3 h were synthesized via facile co-precipitation method. DTA/TGA, X-ray diffraction (XRD), energy dispersive scanning electron microscopy (SEM/EDX), UV-vis diffuse reflectance spectrum (UV-vis DRS), Raman spectroscopy and photoluminescence (PL) techniques were used for material characterization. The (XRD) patterns of as-synthesized Sr-doped Ca(PO) solid solution samples exhibited a systematic shift toward lower angles by possessing a single rhombohedral crystal structure without any secondary phases. The UV light driven photocatalytic activity was assessed for rhodamine B (RhB) degradation. As a result, ultrafast photodegradation activity was observed after Sr doping. Moreover, the 30 wt% Sr-Ca(PO) sample showed the highest photocatalytic degradation among the Sr-doped Ca(PO) samples toward RhB. It was further suggested that as-synthesized 30 wt% Sr-Ca(PO) superior photocatalytic performance is ascribed to the more proficient partition of photogenerated electron-hole pairs. Furthermore, the involved mechanism of superior photocatalytic performance of the 30 wt% Sr-Ca(PO) solid solution was also investigated. In addition, regeneration cycles indicated the higher stability of the photocatalyst to be effectively recycled up to four times without any considerable reduction in photocatalytic performance. Thus, these informations further provides us a scalable pathway to fabricate Sr doped Ca(PO) and its consequent use as an efficient photocatalyst for rhodamine B (RhB) contaminated wastewater treatment.
采用简便的共沉淀法合成了具有最大锶含量(40 wt% Sr)的掺杂和未掺杂的Ca(PO)纳米粒子,并在800℃下煅烧3小时。采用差示热分析/热重分析(DTA/TGA)、X射线衍射(XRD)、能量色散扫描电子显微镜(SEM/EDX)、紫外可见漫反射光谱(UV-vis DRS)、拉曼光谱和光致发光(PL)技术对材料进行表征。合成的掺锶Ca(PO)固溶体样品的(XRD)图谱显示,通过具有单一菱面体晶体结构且无任何第二相,向较低角度有系统的偏移。评估了紫外光驱动的光催化活性对罗丹明B(RhB)的降解情况。结果,掺锶后观察到超快光降解活性。此外,30 wt% Sr-Ca(PO)样品在掺锶的Ca(PO)样品中对RhB表现出最高的光催化降解率。进一步表明,合成的30 wt% Sr-Ca(PO)优异的光催化性能归因于光生电子-空穴对的更有效分离。此外,还研究了30 wt% Sr-Ca(PO)固溶体优异光催化性能的相关机理。此外,再生循环表明光催化剂具有较高的稳定性,可有效循环使用多达四次,而光催化性能没有任何显著降低。因此,这些信息进一步为我们提供了一条可扩展的途径来制备掺锶的Ca(PO)及其作为罗丹明B(RhB)污染废水处理的高效光催化剂的后续应用。