IEEE Trans Pattern Anal Mach Intell. 2021 Oct;43(10):3333-3348. doi: 10.1109/TPAMI.2020.2984244. Epub 2021 Sep 2.
In this paper, we propose a novel deep convolutional neural network to solve the general multi-modal image restoration (MIR) and multi-modal image fusion (MIF) problems. Different from other methods based on deep learning, our network architecture is designed by drawing inspirations from a new proposed multi-modal convolutional sparse coding (MCSC) model. The key feature of the proposed network is that it can automatically split the common information shared among different modalities, from the unique information that belongs to each single modality, and is therefore denoted with CU-Net, i.e., common and unique information splitting network. Specifically, the CU-Net is composed of three modules, i.e., the unique feature extraction module (UFEM), common feature preservation module (CFPM), and image reconstruction module (IRM). The architecture of each module is derived from the corresponding part in the MCSC model, which consists of several learned convolutional sparse coding (LCSC) blocks. Extensive numerical results verify the effectiveness of our method on a variety of MIR and MIF tasks, including RGB guided depth image super-resolution, flash guided non-flash image denoising, multi-focus and multi-exposure image fusion.
在本文中,我们提出了一种新颖的深度卷积神经网络,用于解决一般的多模态图像恢复(MIR)和多模态图像融合(MIF)问题。与其他基于深度学习的方法不同,我们的网络架构是从新提出的多模态卷积稀疏编码(MCSC)模型中获得灵感设计的。所提出的网络的关键特征是,它可以自动分割不同模态之间共享的公共信息,以及属于每个单模态的独特信息,因此被命名为 CU-Net,即公共和独特信息分割网络。具体来说,CU-Net 由三个模块组成,即独特特征提取模块(UFEM)、公共特征保持模块(CFPM)和图像重建模块(IRM)。每个模块的架构都源自 MCSC 模型的对应部分,它由几个学习的卷积稀疏编码(LCSC)块组成。大量的数值结果验证了我们的方法在各种 MIR 和 MIF 任务中的有效性,包括 RGB 引导的深度图像超分辨率、闪光引导的非闪光图像去噪、多聚焦和多曝光图像融合。