Suppr超能文献

基于RGB-D图像的多模态深度学习用于麦田杂草检测

Multi-Modal Deep Learning for Weeds Detection in Wheat Field Based on RGB-D Images.

作者信息

Xu Ke, Zhu Yan, Cao Weixing, Jiang Xiaoping, Jiang Zhijian, Li Shuailong, Ni Jun

机构信息

College of Agriculture, Nanjing Agricultural University, Nanjing, China.

National Engineering and Technology Center for Information Agriculture, Nanjing, China.

出版信息

Front Plant Sci. 2021 Nov 5;12:732968. doi: 10.3389/fpls.2021.732968. eCollection 2021.

Abstract

Single-modal images carry limited information for features representation, and RGB images fail to detect grass weeds in wheat fields because of their similarity to wheat in shape. We propose a framework based on multi-modal information fusion for accurate detection of weeds in wheat fields in a natural environment, overcoming the limitation of single modality in weeds detection. Firstly, we recode the single-channel depth image into a new three-channel image like the structure of RGB image, which is suitable for feature extraction of convolutional neural network (CNN). Secondly, the multi-scale object detection is realized by fusing the feature maps output by different convolutional layers. The three-channel network structure is designed to take into account the independence of RGB and depth information, respectively, and the complementarity of multi-modal information, and the integrated learning is carried out by weight allocation at the decision level to realize the effective fusion of multi-modal information. The experimental results show that compared with the weed detection method based on RGB image, the accuracy of our method is significantly improved. Experiments with integrated learning shows that mean average precision () of 36.1% for grass weeds and 42.9% for broad-leaf weeds, and the overall detection precision, as indicated by intersection over ground truth (), is 89.3%, with weights of RGB and depth images at α = 0.4 and β = 0.3. The results suggest that our methods can accurately detect the dominant species of weeds in wheat fields, and that multi-modal fusion can effectively improve object detection performance.

摘要

单模态图像在特征表示方面携带的信息有限,并且由于形状与小麦相似,RGB图像无法检测麦田中的禾本科杂草。我们提出了一种基于多模态信息融合的框架,用于在自然环境中准确检测麦田中的杂草,克服了单模态在杂草检测方面的局限性。首先,我们将单通道深度图像重新编码为具有类似RGB图像结构的新三通道图像,这适用于卷积神经网络(CNN)的特征提取。其次,通过融合不同卷积层输出的特征图来实现多尺度目标检测。设计三通道网络结构分别考虑RGB和深度信息的独立性以及多模态信息的互补性,并在决策层面通过权重分配进行集成学习,以实现多模态信息的有效融合。实验结果表明,与基于RGB图像的杂草检测方法相比,我们的方法准确率显著提高。集成学习实验表明,禾本科杂草的平均精度均值(mAP)为36.1%,阔叶杂草为42.9%,以真实值交集(IoU)表示的整体检测精度为89.3%,RGB和深度图像的权重分别为α = 0.4和β = 0.3。结果表明,我们的方法可以准确检测麦田中的优势杂草种类,并且多模态融合可以有效提高目标检测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38e4/8604282/583d80bac78d/fpls-12-732968-g001.jpg

相似文献

1
Multi-Modal Deep Learning for Weeds Detection in Wheat Field Based on RGB-D Images.
Front Plant Sci. 2021 Nov 5;12:732968. doi: 10.3389/fpls.2021.732968. eCollection 2021.
2
RGB-D Object Recognition Using Multi-Modal Deep Neural Network and DS Evidence Theory.
Sensors (Basel). 2019 Jan 27;19(3):529. doi: 10.3390/s19030529.
4
RGB-T Salient Object Detection via Fusing Multi-level CNN Features.
IEEE Trans Image Process. 2019 Dec 17. doi: 10.1109/TIP.2019.2959253.
5
Three-stream Attention-aware Network for RGB-D Salient Object Detection.
IEEE Trans Image Process. 2019 Jan 7. doi: 10.1109/TIP.2019.2891104.
7
Citrus Huanglongbing Detection Based on Multi-Modal Feature Fusion Learning.
Front Plant Sci. 2021 Dec 23;12:809506. doi: 10.3389/fpls.2021.809506. eCollection 2021.
8
Weed detection and recognition in complex wheat fields based on an improved YOLOv7.
Front Plant Sci. 2024 Jun 24;15:1372237. doi: 10.3389/fpls.2024.1372237. eCollection 2024.
9
Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection.
IEEE Trans Image Process. 2018;27(1):121-134. doi: 10.1109/TIP.2017.2756825.
10
Multi-modal deep learning networks for RGB-D pavement waste detection and recognition.
Waste Manag. 2024 Apr 1;177:125-134. doi: 10.1016/j.wasman.2024.01.047. Epub 2024 Feb 6.

引用本文的文献

2
3
Weed detection and recognition in complex wheat fields based on an improved YOLOv7.
Front Plant Sci. 2024 Jun 24;15:1372237. doi: 10.3389/fpls.2024.1372237. eCollection 2024.
4
Design of field real-time target spraying system based on improved YOLOv5.
Front Plant Sci. 2022 Dec 19;13:1072631. doi: 10.3389/fpls.2022.1072631. eCollection 2022.
5
Multi-modal and multi-view image dataset for weeds detection in wheat field.
Front Plant Sci. 2022 Aug 22;13:936748. doi: 10.3389/fpls.2022.936748. eCollection 2022.

本文引用的文献

1
Machine Learning for Smart Environments in B5G Networks: Connectivity and QoS.
Comput Intell Neurosci. 2021 Sep 18;2021:6805151. doi: 10.1155/2021/6805151. eCollection 2021.
2
Illuminating the dark spaces of healthcare with ambient intelligence.
Nature. 2020 Sep;585(7824):193-202. doi: 10.1038/s41586-020-2669-y. Epub 2020 Sep 9.
3
Three-stream Attention-aware Network for RGB-D Salient Object Detection.
IEEE Trans Image Process. 2019 Jan 7. doi: 10.1109/TIP.2019.2891104.
4
A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery.
Sensors (Basel). 2018 Jul 1;18(7):2113. doi: 10.3390/s18072113.
5
A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.
PLoS One. 2018 Apr 26;13(4):e0196302. doi: 10.1371/journal.pone.0196302. eCollection 2018.
7
Long-term trends in the intensity and relative toxicity of herbicide use.
Nat Commun. 2017 Apr 10;8:14865. doi: 10.1038/ncomms14865.
9
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.
10
Assessment of soybean injury from glyphosate using airborne multispectral remote sensing.
Pest Manag Sci. 2015 Apr;71(4):545-52. doi: 10.1002/ps.3839. Epub 2014 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验