Suppr超能文献

通过跨摄像头相似性探索实现无监督行人重识别

Unsupervised Person Re-identification via Cross-camera Similarity Exploration.

作者信息

Lin Yutian, Wu Yu, Yan Chenggang, Xu Mingliang, Yang Yi

出版信息

IEEE Trans Image Process. 2020 Apr 1. doi: 10.1109/TIP.2020.2982826.

Abstract

Most person re-identification (re-ID) approaches are based on supervised learning, which requires manually annotated data. However, it is not only resource-intensive to acquire identity annotation but also impractical for large-scale data. To relieve this problem, we propose a cross-camera unsupervised approach that makes use of unsupervised style-transferred images to jointly optimize a convolutional neural network (CNN) and the relationship among the individual samples for person re-ID. Our algorithm considers two fundamental facts in the re- ID task, i.e., variance across diverse cameras and similarity within the same identity. In this paper, we propose an iterative framework which overcomes the camera variance and achieves across-camera similarity exploration. Specifically, we apply an unsupervised style transfer model to generate style-transferred training images with different camera styles. Then we iteratively exploit the similarity within the same identity from both the original and the style-transferred data. We start with considering each training image as a different class to initialize the Convolutional Neural Network (CNN) model. Then we measure the similarity and gradually group similar samples into one class, which increases similarity within each identity. We also introduce a diversity regularization term in the clustering to balance the cluster distribution. The experimental results demonstrate that our algorithm is not only superior to state-of-the-art unsupervised re-ID approaches, but also performs favorably compared with other competing unsupervised domain adaptation methods (UDA) and semi-supervised learning methods.

摘要

大多数行人重识别(re-ID)方法基于监督学习,这需要手动标注数据。然而,获取身份标注不仅资源密集,而且对于大规模数据来说不切实际。为缓解这一问题,我们提出一种跨摄像头无监督方法,该方法利用无监督风格迁移图像来联合优化卷积神经网络(CNN)以及行人re-ID中各个样本之间的关系。我们的算法考虑了re-ID任务中的两个基本事实,即不同摄像头之间的差异以及同一身份内的相似性。在本文中,我们提出了一个迭代框架,该框架克服了摄像头差异并实现了跨摄像头相似性探索。具体来说,我们应用一个无监督风格迁移模型来生成具有不同摄像头风格的风格迁移训练图像。然后,我们从原始数据和风格迁移数据中迭代利用同一身份内的相似性。我们首先将每个训练图像视为一个不同的类别来初始化卷积神经网络(CNN)模型。然后我们测量相似性并逐渐将相似样本归为一类,这增加了每个身份内的相似性。我们还在聚类中引入了一个多样性正则化项来平衡聚类分布。实验结果表明,我们的算法不仅优于当前最先进的无监督re-ID方法,而且与其他竞争性的无监督域适应方法(UDA)和半监督学习方法相比也表现出色。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验