Suppr超能文献

结合无味卡尔曼滤波和双贪婪降维方法对基础状态和β-肾上腺素刺激下的时空心脏动作电位变异性进行特征描述。

Characterization of Spatio-Temporal Cardiac Action Potential Variability at Baseline and Under β-Adrenergic Stimulation by Combined Unscented Kalman Filter and Double Greedy Dimension Reduction.

出版信息

IEEE J Biomed Health Inform. 2021 Jan;25(1):276-288. doi: 10.1109/JBHI.2020.2984647. Epub 2021 Jan 5.

Abstract

OBJECTIVE

Elevated spatio-temporal variability of human ventricular repolarization has been related to increased risk for ventricular arrhythmias and sudden cardiac death, particularly under β-adrenergic stimulation ( β-AS). This work presents a methodology for theoretical characterization of temporal and spatial repolarization variability at baseline conditions and in response to β-AS. For any measured voltage trace, the proposed methodology estimates the parameters and state variables of an underlying human ventricular action potential (AP) model by combining Double Greedy Dimension Reduction (DGDR) with automatic selection of biomarkers and the Unscented Kalman Filter (UKF). Such theoretical characterization can facilitate subsequent characterization of underlying variability mechanisms.

MATERIAL AND METHODS

Given an AP trace, initial estimates for the ionic conductances in a stochastic version of the baseline human ventricular O'Hara et al. model were obtained by DGDR. Those estimates served to initialize and update model parameter estimates by the UKF method based on formulation of an associated nonlinear state-space representation and joint estimation of model parameters and state variables. Similarly, β-AS-induced phosphorylation levels of cellular substrates were estimated by the DGDR-UKF methodology. Performance was tested by building an experimentally-calibrated population of virtual cells, from which synthetic AP traces were generated for baseline and β-AS conditions.

RESULTS

The combined DGDR-UKF methodology led to 25% reduction in the error associated with estimation of ionic current conductances at baseline conditions and phosphorylation levels under β-AS with respect to individual DGDR and UKF methods. This improvement was not at the expense of higher computational load, which was diminished by 90% with respect to the individual UKF method. Both temporal and spatial AP variability of repolarization were accurately characterized by the DGDR-UKF methodology.

CONCLUSIONS

A combined DGDR-UKF methodology is proposed for parameter and state variable estimation of human ventricular cell models from available AP traces at baseline and under β-AS. This methodology improves the estimation performance and reduces the convergence time with respect to individual DGDR and UKF methods and renders a suitable approach for computational characterization of spatio-temporal repolarization variability to be used for ascertainment of variability mechanisms and its relation to arrhythmogenesis.

摘要

目的

人类心室复极的时空变异性增加与室性心律失常和心源性猝死的风险增加有关,尤其是在β-肾上腺素刺激(β-AS)下。本工作提出了一种在基础状态和β-AS 反应下对时间和空间复极变异性进行理论特征描述的方法。对于任何测量的电压迹线,所提出的方法通过结合双贪婪降维(DGDR)与生物标志物的自动选择以及无迹卡尔曼滤波(UKF),来估计潜在人类心室动作电位(AP)模型的参数和状态变量。这种理论特征描述可以方便后续对潜在变异性机制的特征描述。

材料与方法

给定一个 AP 迹线,通过 DGDR 获得随机基线人类心室 O'Hara 等人模型中离子电导率的初始估计。这些估计用于通过 UKF 方法初始化和更新模型参数估计,该方法基于相关非线性状态空间表示的构建和模型参数和状态变量的联合估计。同样,通过 DGDR-UKF 方法估计细胞底物的β-AS 诱导磷酸化水平。通过构建一个经过实验校准的虚拟细胞群体来测试性能,从该群体中生成基础状态和β-AS 条件下的合成 AP 迹线。

结果

与单独的 DGDR 和 UKF 方法相比,DGDR-UKF 联合方法将基线条件下离子电流电导和β-AS 下磷酸化水平的估计相关误差降低了 25%。这种改进并没有以更高的计算负担为代价,与单独的 UKF 方法相比,计算负担减少了 90%。DGDR-UKF 方法准确地描述了 AP 复极的时间和空间变异性。

结论

提出了一种联合的 DGDR-UKF 方法,用于从基础状态和β-AS 下的可用 AP 迹线中估计人类心室细胞模型的参数和状态变量。与单独的 DGDR 和 UKF 方法相比,该方法提高了估计性能并减少了收敛时间,并为时空复极变异性的计算特征描述提供了一种合适的方法,用于确定变异性机制及其与心律失常发生的关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验