Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria.
Neurochem Res. 2020 Jul;45(7):1551-1565. doi: 10.1007/s11064-020-03017-y. Epub 2020 Apr 4.
Focal epileptic seizures can in some patients be managed by inhibiting γ-aminobutyric acid (GABA) uptake via the GABA transporter 1 (GAT1) using tiagabine (Gabitril®). Synergistic anti-seizure effects achieved by inhibition of both GAT1 and the betaine/GABA transporter (BGT1) by tiagabine and EF1502, compared to tiagabine alone, suggest BGT1 as a target in epilepsy. Yet, selective BGT1 inhibitors are needed for validation of this hypothesis. In that search, a series of BGT1 inhibitors typified by (1R,2S)-2-((4,4-bis(3-methylthiophen-2-yl)but-3-en-yl)(methyl)amino)cyclohexanecarboxylic acid (SBV2-114) was developed. A thorough pharmacological characterization of SBV2-114 using a cell-based [H]GABA uptake assay at heterologously expressed BGT1, revealed an elusive biphasic inhibition profile with two IC values (4.7 and 556 μM). The biphasic profile was common for this structural class of compounds, including EF1502, and was confirmed in the MDCK II cell line endogenously expressing BGT1. The possibility of two binding sites for SBV2-114 at BGT1 was assessed by computational docking studies and examined by mutational studies. These investigations confirmed that the conserved residue Q299 in BGT1 is involved in, but not solely responsible for the biphasic inhibition profile of SBV2-114. Animal studies revealed anti-seizure effects of SBV2-114 in two mouse models, supporting a function of BGT1 in epilepsy. However, as SBV2-114 is apparent to be rather non-selective for BGT1, the translational relevance of this observation is unknown. Nevertheless, SBV2-114 constitutes a valuable tool compound to study the molecular mechanism of an emerging biphasic profile of BGT1-mediated GABA transport and the putative involvement of two binding sites for this class of compounds.
在一些患者中,通过抑制 GABA 转运体 1(GAT1)可以控制局灶性癫痫发作,这种方法可以使用噻加宾(Gabitril®)实现。噻加宾和 EF1502 同时抑制 GAT1 和甜菜碱/GABA 转运体(BGT1),与单独使用噻加宾相比,产生了协同的抗癫痫作用,这表明 BGT1 是癫痫的一个靶点。然而,需要选择性的 BGT1 抑制剂来验证这一假设。在这一研究中,开发了一系列以(1R,2S)-2-((4,4-双(3-甲基噻吩-2-基)丁-3-烯基)(甲基)氨基)环己烷羧酸(SBV2-114)为代表的 BGT1 抑制剂。使用在异源表达的 BGT1 上进行的基于细胞的[H]GABA 摄取测定法对 SBV2-114 进行了全面的药理学表征,结果显示出难以捉摸的双相抑制谱,具有两个 IC 值(4.7 和 556 μM)。这种双相谱是这一类化合物的共同特征,包括 EF1502,并在 MDCK II 细胞系中得到了证实,该细胞系内源性表达 BGT1。通过计算对接研究评估了 SBV2-114 在 BGT1 上存在两个结合位点的可能性,并通过突变研究进行了检查。这些研究证实,BGT1 中的保守残基 Q299 参与了 SBV2-114 的双相抑制谱,但不是唯一负责该抑制谱的原因。动物研究显示 SBV2-114 在两种小鼠模型中具有抗癫痫作用,支持 BGT1 在癫痫中的作用。然而,由于 SBV2-114 对 BGT1 显然是非选择性的,因此这种观察的转化相关性尚不清楚。尽管如此,SBV2-114 构成了一种有价值的工具化合物,可以用于研究 BGT1 介导的 GABA 转运的新兴双相谱的分子机制,以及这类化合物的两个结合位点的可能参与。