Suppr超能文献

实验约束对微纳加工硬组织样本微机械评估的影响。

Influence of experimental constraints on micromechanical assessment of micromachined hard-tissue samples.

机构信息

Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060, Vienna, Austria.

Institute of Materials Science and Technology, TU Wien, 1060, Vienna, Austria.

出版信息

J Mech Behav Biomed Mater. 2020 Jun;106:103741. doi: 10.1016/j.jmbbm.2020.103741. Epub 2020 Mar 24.

Abstract

Continuing technological advancement of mechanical characterization at the microscale has enabled the isolation of micron-sized specimens and their direct mechanical characterization. Such techniques, initially developed for engineering materials and MEMS, can also be applied on hard biological materials. Bone is a material with a complex hierarchical structure ranging from the macro- all the way down to the nanoscale. To fully understand bone tissue mechanics, knowledge of the mechanics of all structural elements i.e. at every length scale is necessary. Particularly, the mechanical properties of microstructural elements, such as bone lamellae are still largely unknown. In the last decade, testing protocols have been devised to close this gap including bending and compression of micrometer-sized bone specimens. However, the precision and accuracy of results obtained have not been discussed. In this study, we aim to do exactly this: we validate microbeam bending by testing silicon microbeams with known mechanical constants, and evaluate the precision and sources of errors in both microbeam bending and micropillar compression by means of finite element (FE) modeling. Bending of Si-microbeams reproduced the expected value for the bending modulus within 17% accuracy, although the effect of geometrical uncertainties was estimated to result in relative errors of up to 50%. The deformation of constraining bulk material had a smaller influence, with relative errors of 11%, for microbeam bending and 25% for micropillar compression. For the latter this error could be sufficiently eliminated by the Sneddon correction. The tapering of micropillars had a negligible effect on overall apparent stiffness, but induced inhomogeneous stress state within micropillars may lead to superposed structural deformation mechanisms and be responsible for failure patterns observed in past studies.

摘要

随着机械特性微观尺度分析技术的不断进步,人们已经可以分离出微米级的样本并对其进行直接力学特性分析。这种技术最初是为工程材料和微机电系统(MEMS)开发的,现在也可以应用于坚硬的生物材料。骨骼是一种具有复杂层次结构的材料,从宏观到纳米尺度都有涉及。为了全面了解骨骼组织的力学性能,有必要了解所有结构元素的力学特性,也就是在各个长度尺度上的力学特性。特别是,骨骼微结构元素(如骨板)的力学性能在很大程度上仍然未知。在过去的十年中,已经设计出了一些测试方案来填补这一空白,包括对微米级骨骼样本进行弯曲和压缩测试。然而,这些方案得到的结果的精确性和准确性尚未得到讨论。在本研究中,我们的目标正是如此:我们通过测试具有已知力学常数的硅微梁来验证微梁弯曲,并用有限元(FE)建模来评估微梁弯曲和微柱压缩的精度和误差源。硅微梁的弯曲实验再现了弯曲模量的预期值,精度在 17%以内,尽管几何不确定性的影响估计会导致高达 50%的相对误差。约束体材料的变形对微梁弯曲的影响较小,相对误差为 11%,而对微柱压缩的影响则为 25%。对于后者,Sneddon 修正可以充分消除这种误差。微柱的锥形化对整体表观刚度的影响可以忽略不计,但会在微柱内产生不均匀的应力状态,这可能导致叠加的结构变形机制,并对过去研究中观察到的失效模式负责。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验