文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Comparison of Read Mapping and Variant Calling Tools for the Analysis of Plant NGS Data.

作者信息

Schilbert Hanna Marie, Rempel Andreas, Pucker Boas

机构信息

Genetics and Genomics of Plants, CeBiTec and Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany.

Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany.

出版信息

Plants (Basel). 2020 Apr 2;9(4):439. doi: 10.3390/plants9040439.


DOI:10.3390/plants9040439
PMID:32252268
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7238416/
Abstract

High-throughput sequencing technologies have rapidly developed during the past years and have become an essential tool in plant sciences. However, the analysis of genomic data remains challenging and relies mostly on the performance of automatic pipelines. Frequently applied pipelines involve the alignment of sequence reads against a reference sequence and the identification of sequence variants. Since most benchmarking studies of bioinformatics tools for this purpose have been conducted on human datasets, there is a lack of benchmarking studies in plant sciences. In this study, we evaluated the performance of 50 different variant calling pipelines, including five read mappers and ten variant callers, on six real plant datasets of the model organism . Sets of variants were evaluated based on various parameters including sensitivity and specificity. We found that all investigated tools are suitable for analysis of NGS data in plant research. When looking at different performance metrics, BWA-MEM and Novoalign were the best mappers and GATK returned the best results in the variant calling step.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d1/7238416/00edc0de2de7/plants-09-00439-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d1/7238416/c93c189d8e2d/plants-09-00439-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d1/7238416/a05863e18032/plants-09-00439-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d1/7238416/e79a43ee1a5e/plants-09-00439-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d1/7238416/e6fe8ff7d152/plants-09-00439-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d1/7238416/b27d093be2ac/plants-09-00439-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d1/7238416/00edc0de2de7/plants-09-00439-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d1/7238416/c93c189d8e2d/plants-09-00439-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d1/7238416/a05863e18032/plants-09-00439-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d1/7238416/e79a43ee1a5e/plants-09-00439-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d1/7238416/e6fe8ff7d152/plants-09-00439-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d1/7238416/b27d093be2ac/plants-09-00439-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d1/7238416/00edc0de2de7/plants-09-00439-g006.jpg

相似文献

[1]
Comparison of Read Mapping and Variant Calling Tools for the Analysis of Plant NGS Data.

Plants (Basel). 2020-4-2

[2]
Performance evaluation of pipelines for mapping, variant calling and interval padding, for the analysis of NGS germline panels.

BMC Bioinformatics. 2021-4-28

[3]
Evaluation of variant calling tools for large plant genome re-sequencing.

BMC Bioinformatics. 2020-8-17

[4]
Systematic comparison of variant calling pipelines using gold standard personal exome variants.

Sci Rep. 2015-12-7

[5]
Benchmarking variant identification tools for plant diversity discovery.

BMC Genomics. 2019-9-9

[6]
Performance assessment of variant calling pipelines using human whole exome sequencing and simulated data.

BMC Bioinformatics. 2019-6-17

[7]
Systematic benchmark of state-of-the-art variant calling pipelines identifies major factors affecting accuracy of coding sequence variant discovery.

BMC Genomics. 2022-2-22

[8]
Variant callers for next-generation sequencing data: a comparison study.

PLoS One. 2013-9-27

[9]
Impact of post-alignment processing in variant discovery from whole exome data.

BMC Bioinformatics. 2016-10-3

[10]
An investigation of causes of false positive single nucleotide polymorphisms using simulated reads from a small eukaryote genome.

BMC Bioinformatics. 2015-11-11

引用本文的文献

[1]
Benchmarking of low coverage sequencing workflows for precision genotyping in eggplant.

BMC Plant Biol. 2025-8-25

[2]
NewtCap: An Efficient Target Capture Approach to Boost Genomic Studies in Salamandridae (True Salamanders and Newts).

Ecol Evol. 2025-8-12

[3]
A reproducible ddRAD-seq protocol reveals novel genomic association signatures for fruit-related traits in peach.

Plant Methods. 2025-7-22

[4]
A comprehensive catalog of single nucleotide polymorphisms (SNPs) from the black pepper (Piper nigrum L.) genome.

BMC Genomics. 2025-3-17

[5]
NAVIP: Unraveling the influence of neighboring small sequence variants on functional impact prediction.

PLoS Comput Biol. 2025-2-18

[6]
Development and validation of a minimal SNP genotyping panel for the differentiation of Cannabis sativa cultivars.

BMC Genomics. 2025-1-28

[7]
High-throughput method characterizes hundreds of previously unknown antibiotic resistance mutations.

Nat Commun. 2025-1-17

[8]
An in vitro approach reveals molecular mechanisms underlying endocrine disruptor-induced epimutagenesis.

Elife. 2024-10-3

[9]
Assessing myBaits Target Capture Sequencing Methodology Using Short-Read Sequencing for Variant Detection in Oat Genomics and Breeding.

Genes (Basel). 2024-5-27

[10]
Efficient wastewater sample filtration improves the detection of SARS-CoV-2 variants: An extensive analysis based on sequencing parameters.

PLoS One. 2024

本文引用的文献

[1]
Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus.

Nat Plants. 2020-1-13

[2]
Benchmarking variant identification tools for plant diversity discovery.

BMC Genomics. 2019-9-9

[3]
A chromosome-level sequence assembly reveals the structure of the Arabidopsis thaliana Nd-1 genome and its gene set.

PLoS One. 2019-5-21

[4]
Structural variants in 3000 rice genomes.

Genome Res. 2019-4-16

[5]
Comparative analysis of whole-genome sequencing pipelines to minimize false negative findings.

Sci Rep. 2019-3-1

[6]
Comparing the performance of selected variant callers using synthetic data and genome segmentation.

BMC Bioinformatics. 2018-11-19

[7]
Plant Genetics and Molecular Biology: An Introduction.

Adv Biochem Eng Biotechnol. 2018

[8]
Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice.

Nat Genet. 2018-1-15

[9]
Discovery and genotyping of novel sequence insertions in many sequenced individuals.

Bioinformatics. 2017-7-15

[10]
From next-generation resequencing reads to a high-quality variant data set.

Heredity (Edinb). 2017-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索