Suppr超能文献

从新一代重测序 reads 到高质量变异数据集。

From next-generation resequencing reads to a high-quality variant data set.

作者信息

Pfeifer S P

机构信息

School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Swiss Institute of Bioinformatics, Lausanne, Switzerland.

出版信息

Heredity (Edinb). 2017 Feb;118(2):111-124. doi: 10.1038/hdy.2016.102. Epub 2016 Oct 19.

Abstract

Sequencing has revolutionized biology by permitting the analysis of genomic variation at an unprecedented resolution. High-throughput sequencing is fast and inexpensive, making it accessible for a wide range of research topics. However, the produced data contain subtle but complex types of errors, biases and uncertainties that impose several statistical and computational challenges to the reliable detection of variants. To tap the full potential of high-throughput sequencing, a thorough understanding of the data produced as well as the available methodologies is required. Here, I review several commonly used methods for generating and processing next-generation resequencing data, discuss the influence of errors and biases together with their resulting implications for downstream analyses and provide general guidelines and recommendations for producing high-quality single-nucleotide polymorphism data sets from raw reads by highlighting several sophisticated reference-based methods representing the current state of the art.

摘要

测序技术通过以前所未有的分辨率对基因组变异进行分析,给生物学带来了革命性的变化。高通量测序速度快且成本低,使其适用于广泛的研究课题。然而,所产生的数据包含细微但复杂的错误、偏差和不确定性类型,这给可靠检测变异带来了若干统计和计算方面的挑战。为了充分挖掘高通量测序的潜力,需要深入了解所产生的数据以及可用的方法。在此,我回顾了几种用于生成和处理新一代重测序数据的常用方法,讨论了错误和偏差的影响及其对下游分析的影响,并通过强调几种代表当前技术水平的复杂的基于参考的方法,提供了从原始读数生成高质量单核苷酸多态性数据集的一般指南和建议。

相似文献

3
Genomic Sequence Variation Analysis by Resequencing.通过重测序进行基因组序列变异分析。
Methods Mol Biol. 2018;1775:229-239. doi: 10.1007/978-1-4939-7804-5_18.
5
A Survey of Software and Hardware Approaches to Performing Read Alignment in Next Generation Sequencing.下一代测序中进行读段比对的软件和硬件方法综述。
IEEE/ACM Trans Comput Biol Bioinform. 2017 Nov-Dec;14(6):1202-1213. doi: 10.1109/TCBB.2016.2586070. Epub 2016 Jun 29.
10
Variant Review with the Integrative Genomics Viewer.使用综合基因组浏览器进行变异审查。
Cancer Res. 2017 Nov 1;77(21):e31-e34. doi: 10.1158/0008-5472.CAN-17-0337.

引用本文的文献

本文引用的文献

2
Long-read sequence assembly of the gorilla genome.大猩猩基因组的长读长序列组装
Science. 2016 Apr 1;352(6281):aae0344. doi: 10.1126/science.aae0344.
7
Detection of Genomic Structural Variants from Next-Generation Sequencing Data.从下一代测序数据中检测基因组结构变异。
Front Bioeng Biotechnol. 2015 Jun 25;3:92. doi: 10.3389/fbioe.2015.00092. eCollection 2015.
9
BFC: correcting Illumina sequencing errors.BFC:校正Illumina测序错误。
Bioinformatics. 2015 Sep 1;31(17):2885-7. doi: 10.1093/bioinformatics/btv290. Epub 2015 May 6.
10
Alignment of Next-Generation Sequencing Reads.下一代测序读数的比对
Annu Rev Genomics Hum Genet. 2015;16:133-51. doi: 10.1146/annurev-genom-090413-025358. Epub 2015 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验