Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia.
Department of Medical Microbiology and Infectious Diseases, Research and Development Unit, Erasmus Medical Centre, Rotterdam, The Netherlands.
Antimicrob Agents Chemother. 2020 May 21;64(6). doi: 10.1128/AAC.00342-20.
There are limited treatment options for enterococcal urinary tract infections, especially vancomycin-resistant (VRE). Oral fosfomycin is a potential option, although limited data are available guiding dosing and susceptibility. We undertook pharmacodynamic profiling of fosfomycin against and isolates using a dynamic bladder infection model. Eighty-four isolates underwent fosfomycin agar dilution susceptibility testing ( MIC 32/64 μg/ml; MIC 64/128 μg/ml). Sixteen isolates (including ATCC 29212 and ATCC 35667) were chosen to reflect the MIC range and tested in the bladder infection model with synthetic human urine (SHU). Under drug-free conditions, demonstrated greater growth restriction in SHU compared to ( maximal growth 5.8 ± 0.6 log CFU/ml; 8.0 ± 1.0 log CFU/ml). Isolates were exposed to high and low fosfomycin urinary concentrations after a single dose, and after two doses given over two days with low urinary concentration exposure. Simulated concentrations closely matched the target (bias 2.3%). isolates required greater fosfomycin exposure for 3 log kill from the starting inoculum compared with The ƒAUC/MIC and ƒ%T > MIC for were 672 and 70%, compared to 216 and 51% for , respectively. There was no rise in fosfomycin MIC postexposure. Two doses of fosfomycin with low urinary concentrations resulted in equivalent growth inhibition to a single dose with high urinary concentrations. With this urinary exposure, fosfomycin was effective in promoting suppression of regrowth (>3 log kill) in the majority of isolates.
肠球菌尿路感染的治疗选择有限,尤其是耐万古霉素的肠球菌(VRE)。口服磷霉素是一种潜在的选择,尽管可用的数据有限,无法指导剂量和药敏。我们使用动态膀胱感染模型对磷霉素进行了药效学分析,以评估其对 和 分离株的作用。84 株分离株进行了磷霉素琼脂稀释药敏试验(MIC32/64μg/ml;MIC64/128μg/ml)。选择了 16 株分离株(包括 ATCC29212 和 ATCC35667),以反映 MIC 范围,并在含有合成人尿(SHU)的膀胱感染模型中进行测试。在无药物条件下, 在 SHU 中的生长受限程度大于 (最大生长 5.8±0.6 log CFU/ml;8.0±1.0 log CFU/ml)。在单次给药后,分离株暴露于高和低磷霉素尿浓度下,在两天内两次给药并低尿浓度暴露。模拟浓度与目标浓度非常吻合(偏差 2.3%)。与 相比, 分离株需要更高的磷霉素暴露量才能从起始接种量实现 3 对数杀灭。对于 ,AUC/MIC 和 ƒ%T > MIC 分别为 672 和 70%,而对于 ,分别为 216 和 51%。暴露后磷霉素 MIC 没有升高。低尿浓度下给予两剂磷霉素与高尿浓度下给予一剂的生长抑制效果相当。在这种尿液暴露下,磷霉素能有效地促进大多数分离株的再生长抑制(>3 对数杀灭)。