Suppr超能文献

分枝杆菌甲基四氢叶酸还原酶单体 NADH-氧化酶缺乏黄素辅酶。

Monomeric NADH-Oxidizing Methylenetetrahydrofolate Reductases from Mycobacterium smegmatis Lack Flavin Coenzyme.

机构信息

Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.

Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India

出版信息

J Bacteriol. 2020 May 27;202(12). doi: 10.1128/JB.00709-19.

Abstract

5,10-Methylenetetrahydrofolate reductase (MetF/MTHFR) is an essential enzyme in one-carbon metabolism for biosynthesis of methionine. Our and analyses of MSMEG_6664/MSMEI_6484, annotated as putative MTHFR in , failed to reveal their function as MTHFRs. However, we identified two hypothetical proteins, MSMEG_6596 and MSMEG_6649, as noncanonical MTHFRs in the bacterium. MTHFRs are known to be oligomeric flavoproteins. Both MSMEG_6596 and MSMEG_6649 are monomeric proteins and lack flavin coenzymes. , the catalytic efficiency (/ ) of MSMEG_6596 (MTHFR1) for 5,10-CH-THF and NADH was ∼13.5- and 15.3-fold higher than that of MSMEG_6649 (MTHFR2). Thus, MSMEG_6596 is the major MTHFR. This interpretation was further supported by better rescue of the Δ strain by MTHFR1 than by MTHFR2. As identified by liquid chromatography-tandem mass spectrometry, the product of MTHFR1- or MTHFR2-catalyzed reactions was 5-CH-THF. The Δ strain was partially auxotrophic for methionine and grew only poorly without methionine or without being complemented with a functional copy of MTHFR1 or MTHFR2. Furthermore, the Δ strain was more sensitive to folate pathway inhibitors (sulfachloropyridazine, -aminosalicylic acid, sulfamethoxazole, and trimethoprim). The studies reveal that MTHFR1 and MTHFR2 are two noncanonical MTHFR proteins that are monomeric and lack flavin coenzyme. Both MTHFR1 and MTHFR2 are involved in methionine biosynthesis and required for antifolate resistance in mycobacteria. MTHFR/MetF is an essential enzyme in a one-carbon metabolic pathway for biosynthesis of methionine. MTHFRs are known to be oligomeric flavoproteins. Our and analyses of MSMEG_6664/MSMEI_6484, annotated as putative MTHFR, failed to reveal their function as MTHFRs. However, we identified two of the hypothetical proteins, MSMEG_6596 and MSMEG_6649, as MTHFR1 and MTHFR2, respectively. Interestingly, both MTHFRs are monomeric and lack flavin coenzymes. deleted for the major () was partially auxotroph for methionine and more sensitive to folate pathway inhibitors (sulfachloropyridazine, -aminosalicylic acid, sulfamethoxazole, and trimethoprim). The studies reveal that MTHFR1 and MTHFR2 are novel MTHFRs involved in methionine biosynthesis and required for antifolate resistance in mycobacteria.

摘要

5,10-亚甲基四氢叶酸还原酶(MetF/MTHFR)是一碳代谢中用于合成蛋氨酸的必需酶。我们对 MSMEG_6664/MSMEI_6484 的 分析和 分析,该基因被注释为 的推定 MTHFR,未能揭示其作为 MTHFR 的功能。然而,我们在该细菌中鉴定出两个假定蛋白 MSMEG_6596 和 MSMEG_6649 作为非典型 MTHFR。众所周知,MTHFR 是寡聚黄素蛋白。MSMEG_6596 和 MSMEG_6649 均为单体蛋白,缺乏黄素辅酶。有趣的是,MSMEG_6596 的 5,10-CH-THF 和 NADH 的催化效率(/)比 MSMEG_6649(MTHFR2)高约 13.5 倍和 15.3 倍。因此,MSMEG_6596 是主要的 MTHFR。这一解释进一步得到了通过 MTHFR1 而不是 MTHFR2 更好地拯救 缺失菌株的支持。通过液相色谱-串联质谱鉴定,MTHFR1 或 MTHFR2 催化反应的产物是 5-CH-THF。缺失菌株对蛋氨酸部分呈营养缺陷型,缺乏蛋氨酸或不补充功能正常的 MTHFR1 或 MTHFR2 时生长不良。此外,缺失菌株对叶酸途径抑制剂(磺胺吡啶、-氨基水杨酸、磺胺甲噁唑和甲氧苄啶)更敏感。研究表明,MTHFR1 和 MTHFR2 是两种非典型的 MTHFR 蛋白,它们是单体且缺乏黄素辅酶。MTHFR1 和 MTHFR2 都参与了蛋氨酸生物合成,并且是分枝杆菌中抗叶酸的必需蛋白。MTHFR/MetF 是一碳代谢途径中用于合成蛋氨酸的必需酶。众所周知,MTHFR 是寡聚黄素蛋白。我们对 MSMEG_6664/MSMEI_6484 的 分析和 分析,该基因被注释为假定的 MTHFR,未能揭示其作为 MTHFR 的功能。然而,我们鉴定出两个假定蛋白 MSMEG_6596 和 MSMEG_6649 分别为 MTHFR1 和 MTHFR2。有趣的是,这两种 MTHFR 都是单体且缺乏黄素辅酶。主要的 缺失菌株()对蛋氨酸部分呈营养缺陷型,对叶酸途径抑制剂(磺胺吡啶、-氨基水杨酸、磺胺甲噁唑和甲氧苄啶)更敏感。研究表明,MTHFR1 和 MTHFR2 是参与蛋氨酸生物合成和分枝杆菌中抗叶酸所必需的新型 MTHFR。

相似文献

3
Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii.
J Bacteriol. 2015 May;197(9):1681-9. doi: 10.1128/JB.00048-15. Epub 2015 Mar 2.
6
Properties and crystal structure of methylenetetrahydrofolate reductase from Thermus thermophilus HB8.
PLoS One. 2011;6(8):e23716. doi: 10.1371/journal.pone.0023716. Epub 2011 Aug 15.
8
Decreased Methylenetetrahydrofolate Reductase Activity Leads to Increased Sensitivity to -Aminosalicylic Acid in Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2022 Jan 18;66(1):e0146521. doi: 10.1128/AAC.01465-21. Epub 2021 Nov 15.
9
Mycobacterium tuberculosis Rv1302 and Mycobacterium smegmatis MSMEG_4947 have WecA function and MSMEG_4947 is required for the growth of M. smegmatis.
FEMS Microbiol Lett. 2010 Sep 1;310(1):54-61. doi: 10.1111/j.1574-6968.2010.02045.x. Epub 2010 Jun 23.
10
Functional identification of MSMEG_6402 protein from Mycobacterium smegmatis in decaprenylphosphoryl-D-arabinose biosynthesis.
Microb Pathog. 2014 Nov;76:44-50. doi: 10.1016/j.micpath.2014.09.007. Epub 2014 Sep 16.

引用本文的文献

1
The T120P or M172V mutation on confers high level -aminosalicylic acid resistance in .
Emerg Microbes Infect. 2024 Dec;13(1):2374030. doi: 10.1080/22221751.2024.2374030. Epub 2024 Jul 24.
3
Identification of a Potential Antimycobacterial Drug Sensitizer Targeting a Flavin-Independent Methylenetetrahydrofolate Reductase.
ACS Omega. 2023 Oct 4;8(41):38406-38417. doi: 10.1021/acsomega.3c05021. eCollection 2023 Oct 17.
5
Decreased Methylenetetrahydrofolate Reductase Activity Leads to Increased Sensitivity to -Aminosalicylic Acid in Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2022 Jan 18;66(1):e0146521. doi: 10.1128/AAC.01465-21. Epub 2021 Nov 15.
7
A Heterodimeric Reduced-Ferredoxin-Dependent Methylenetetrahydrofolate Reductase from Syngas-Fermenting Clostridium ljungdahlii.
Microbiol Spectr. 2021 Oct 31;9(2):e0095821. doi: 10.1128/Spectrum.00958-21. Epub 2021 Oct 13.
8
Four families of folate-independent methionine synthases.
PLoS Genet. 2021 Feb 3;17(2):e1009342. doi: 10.1371/journal.pgen.1009342. eCollection 2021 Feb.

本文引用的文献

1
Alternative Pathways of Acetogenic Ethanol and Methanol Degradation in the Thermophilic Anaerobe .
Front Microbiol. 2019 Mar 19;10:423. doi: 10.3389/fmicb.2019.00423. eCollection 2019.
2
Drugging the Folate Pathway in Mycobacterium tuberculosis: The Role of Multi-targeting Agents.
Cell Chem Biol. 2019 Jun 20;26(6):781-791.e6. doi: 10.1016/j.chembiol.2019.02.013. Epub 2019 Mar 28.
4
Species-Specific Interactions of Arr with RplK Mediate Stringent Response in Bacteria.
J Bacteriol. 2018 Feb 23;200(6). doi: 10.1128/JB.00722-17. Print 2018 Mar 15.
5
Methylfolate Trap Promotes Bacterial Thymineless Death by Sulfa Drugs.
PLoS Pathog. 2016 Oct 19;12(10):e1005949. doi: 10.1371/journal.ppat.1005949. eCollection 2016 Oct.
7
Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii.
J Bacteriol. 2015 May;197(9):1681-9. doi: 10.1128/JB.00048-15. Epub 2015 Mar 2.
8
Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography.
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18225-30. doi: 10.1073/pnas.1415856111. Epub 2014 Dec 1.
9
Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica.
J Bacteriol. 2014 Sep;196(18):3303-14. doi: 10.1128/JB.01839-14. Epub 2014 Jul 7.
10
Folate pathway disruption leads to critical disruption of methionine derivatives in Mycobacterium tuberculosis.
Chem Biol. 2014 Jul 17;21(7):819-30. doi: 10.1016/j.chembiol.2014.04.009. Epub 2014 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验