Suppr超能文献

丝状丝状生物在极端微生物 sp. 菌株 UTEX B3054 中丧失,在基因组和行为水平上保留了多细胞特征。

Loss of Filamentous Multicellularity in : the Extremophile sp. Strain UTEX B3054 Retained Multicellular Features at the Genomic and Behavioral Levels.

机构信息

Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile

Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.

出版信息

J Bacteriol. 2020 May 27;202(12). doi: 10.1128/JB.00514-19.

Abstract

Multicellularity in played a key role in their habitat expansion, contributing to the Great Oxidation Event around 2.45 billion to 2.32 billion years ago. Evolutionary studies have indicated that some unicellular cyanobacteria emerged from multicellular ancestors, yet little is known about how the emergence of new unicellular morphotypes from multicellular ancestors occurred. Our results give new insights into the evolutionary reversion from which the lineage emerged. Flow cytometry and microscopy results revealed morphological plasticity involving the patterned formation of multicellular morphotypes sensitive to environmental stimuli. Genomic analyses unveiled the presence of multicellularity-associated genes in its genome. Calcein-fluorescence recovery after photobleaching (FRAP) experiments confirmed that sp. strain UTEX B3054 carries out cell-to-cell communication in multicellular morphotypes but at slower time scales than filamentous cyanobacteria. Although traditionally classified as unicellular, our results suggest that displays facultative multicellularity, a condition that may have conferred ecological advantages for thriving as an extremophile for more than 1.6 billion years. are among the few prokaryotes that evolved multicellularity. The early emergence of multicellularity in (2.5 billion years ago) entails that some unicellular cyanobacteria reverted from multicellular ancestors. We tested this evolutionary hypothesis by studying the unicellular strain sp. UTEX B3054 using flow cytometry, genomics, and cell-to-cell communication experiments. We demonstrate the existence of a well-defined patterned organization of cells in clusters during growth, which might change triggered by environmental stimuli. Moreover, we found genomic signatures of multicellularity in the genome, giving new insights into the evolutionary history of a cyanobacterial lineage that has thrived in extreme environments since the early Earth. The potential benefits in terms of resource acquisition and the ecological relevance of this transient behavior are discussed.

摘要

多细胞性在它们的栖息地扩张中发挥了关键作用,促成了大约 24.5 亿至 23.2 亿年前的大氧化事件。进化研究表明,一些单细胞蓝细菌是从多细胞祖先中出现的,但对于新的单细胞形态如何从多细胞祖先中出现知之甚少。我们的结果为从多细胞祖先中出现的 谱系的进化逆转提供了新的见解。流式细胞术和显微镜结果显示了涉及对环境刺激敏感的多细胞形态模式形成的形态可塑性。基因组分析揭示了其基因组中存在与多细胞性相关的基因。钙荧光恢复后漂白(FRAP)实验证实, sp. 菌株 UTEX B3054 在多细胞形态中进行细胞间通讯,但时间尺度比丝状蓝细菌慢。尽管传统上被归类为单细胞,但我们的结果表明 表现出兼性多细胞性,这种条件可能为作为 16 多亿年的极端微生物生存带来了生态优势。是少数进化出多细胞性的原核生物之一。多细胞性在 (25 亿年前)的早期出现意味着一些单细胞蓝细菌从多细胞祖先中回归。我们通过使用流式细胞术、基因组学和细胞间通讯实验研究单细胞菌株 sp. UTEX B3054 来检验这一进化假设。我们证明了在生长过程中细胞以簇的形式存在着明确的模式组织,这种组织可能会因环境刺激而发生变化。此外,我们在 基因组中发现了多细胞性的基因组特征,为在早期地球极端环境中生存下来的蓝细菌谱系的进化历史提供了新的见解。讨论了这种瞬态行为在资源获取方面的潜在好处及其生态相关性。

相似文献

2
Genomic Features for Desiccation Tolerance and Sugar Biosynthesis in the Extremophile sp. UTEX B3054.
Front Microbiol. 2019 May 7;10:950. doi: 10.3389/fmicb.2019.00950. eCollection 2019.
3
Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event.
Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1791-6. doi: 10.1073/pnas.1209927110. Epub 2013 Jan 14.
4
The origin of multicellularity in cyanobacteria.
BMC Evol Biol. 2011 Feb 14;11:45. doi: 10.1186/1471-2148-11-45.
5
The Order of Trait Emergence in the Evolution of Cyanobacterial Multicellularity.
Genome Biol Evol. 2021 Feb 3;13(2). doi: 10.1093/gbe/evaa249.
6
An environmentally induced multicellular life cycle of a unicellular cyanobacterium.
Curr Biol. 2023 Feb 27;33(4):764-769.e5. doi: 10.1016/j.cub.2023.01.069.
7
A Comprehensive Study of Cyanobacterial Morphological and Ecological Evolutionary Dynamics through Deep Geologic Time.
PLoS One. 2016 Sep 20;11(9):e0162539. doi: 10.1371/journal.pone.0162539. eCollection 2016.
9
Building a multicellular organism.
Annu Rev Genet. 2001;35:103-23. doi: 10.1146/annurev.genet.35.102401.090145.
10
Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils.
Palaeontology. 2015 Sep;58(5):769-785. doi: 10.1111/pala.12178. Epub 2015 Jun 23.

引用本文的文献

本文引用的文献

1
NUCLEIC ACID SEQUENCE PHYLOGENY AND RANDOM OUTGROUPS.
Cladistics. 1990 Dec;6(4):363-367. doi: 10.1111/j.1096-0031.1990.tb00550.x.
2
Structure and Function of a Bacterial Gap Junction Analog.
Cell. 2019 Jul 11;178(2):374-384.e15. doi: 10.1016/j.cell.2019.05.055.
3
Genomic Features for Desiccation Tolerance and Sugar Biosynthesis in the Extremophile sp. UTEX B3054.
Front Microbiol. 2019 May 7;10:950. doi: 10.3389/fmicb.2019.00950. eCollection 2019.
5
Cyanobacterial Septal Junctions: Properties and Regulation.
Life (Basel). 2018 Dec 20;9(1):1. doi: 10.3390/life9010001.
7
Septal protein SepJ from the heterocyst-forming cyanobacterium forms multimers and interacts with peptidoglycan.
FEBS Open Bio. 2017 Aug 30;7(10):1515-1526. doi: 10.1002/2211-5463.12280. eCollection 2017 Oct.
8
Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium sp. PCC 7120.
Front Cell Infect Microbiol. 2017 Sep 5;7:386. doi: 10.3389/fcimb.2017.00386. eCollection 2017.
9
Plasticity first: molecular signatures of a complex morphological trait in filamentous cyanobacteria.
BMC Evol Biol. 2017 Aug 31;17(1):209. doi: 10.1186/s12862-017-1053-5.
10
The multicellular nature of filamentous heterocyst-forming cyanobacteria.
FEMS Microbiol Rev. 2016 Nov 1;40(6):831-854. doi: 10.1093/femsre/fuw029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验