Department of Integrative Biology, University of California, Berkeley, Berkeley, United States.
Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, United States.
Elife. 2020 Apr 7;9:e52187. doi: 10.7554/eLife.52187.
In diverse organisms, nanostructures that coherently scatter light create structural color, but how such structures are built remains mysterious. We investigate the evolution and genetic regulation of butterfly scale laminae, which are simple photonic nanostructures. In a lineage of buckeye butterflies artificially selected for blue wing color, we found that thickened laminae caused a color shift from brown to blue. Deletion of the patterning gene also altered color via lamina thickening, revealing shared regulation of pigments and lamina thickness. Finally, we show how lamina thickness variation contributes to the color diversity that distinguishes sexes and species throughout the genus . Thus, quantitatively tuning one dimension of scale architecture facilitates both the microevolution and macroevolution of a broad spectrum of hues. Because the lamina is an intrinsic component of typical butterfly scales, our findings suggest that tuning lamina thickness is an available mechanism to create structural color across the Lepidoptera.
在不同的生物体中,相干散射光的纳米结构产生结构色,但这些结构是如何构建的仍然是个谜。我们研究了蝴蝶鳞片的进化和遗传调控,蝴蝶鳞片是一种简单的光子纳米结构。在一个为蓝色翅膀颜色而人工选择的眼蝶谱系中,我们发现加厚的鳞片导致颜色从棕色变为蓝色。 缺失模式基因也通过鳞片增厚改变了颜色,揭示了色素和鳞片厚度的共同调节。最后,我们展示了鳞片厚度变化如何有助于区分该属中性别和物种的颜色多样性。因此,定量调节鳞片结构的一个维度有助于广泛色调的微观进化和宏观进化。由于鳞片是典型蝴蝶鳞片的固有组成部分,我们的发现表明,调节鳞片厚度是在鳞翅目范围内产生结构色的一种可行机制。