Suppr超能文献

健康与病理性红细胞的纳米级膜结构

Nanoscale membrane architecture of healthy and pathological red blood cells.

作者信息

Dumitru Andra C, Poncin Mégane A, Conrard Louise, Dufrêne Yves F, Tyteca Donatienne, Alsteens David

机构信息

Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium.

出版信息

Nanoscale Horiz. 2018 May 1;3(3):293-304. doi: 10.1039/c7nh00187h. Epub 2018 Mar 19.

Abstract

Red blood cells feature remarkable mechanical properties while navigating through microcirculation vessels and during spleen filtration. An unusual combination of plasma membrane and cytoskeleton physical properties allows red blood cells to undergo extensive deformation. Here we used atomic force microscopy multiparametric imaging to probe how cellular organization influences nanoscale and global mechanical properties of cells in both physiological and pathological conditions. Our data obtained in native conditions confirmed that, compared to healthy cells, cells from patients with hereditary spherocytosis are stiffer. Through vertical segmentation of the cell elasticity, we found that healthy and pathological cells display nanoscale architecture with an increasing stiffness along the direction of the applied force. By decoupling the mechanical response of the plasma membrane from its underlying cytoskeleton, we find that both components show altered properties in pathological conditions. Nanoscale multiparametric imaging also revealed lipid domains that exhibit differential mechanical properties than the bulk membrane in both healthy and pathological conditions. Thanks to correlated AFM-fluorescence imaging, we identified submicrometric sphingomyelin-enriched lipid domains of variable stiffness at the red blood cell surface. Our experiments provide novel insights into the interplay between nanoscale organization of red blood cell plasma membrane and their nanomechanical properties. Overall, this work contributes to a better understanding of the complex relationship between cellular nanoscale organization, cellular nanomechanics and how this 3D organization is altered in pathological conditions.

摘要

红细胞在通过微循环血管和脾脏过滤过程中具有显著的力学特性。质膜和细胞骨架物理特性的独特组合使红细胞能够发生广泛的变形。在这里,我们使用原子力显微镜多参数成像来探究细胞组织如何在生理和病理条件下影响细胞的纳米级和整体力学特性。我们在自然条件下获得的数据证实,与健康细胞相比,遗传性球形红细胞增多症患者的细胞更硬。通过对细胞弹性进行垂直分割,我们发现健康细胞和病理细胞均呈现纳米级结构,且沿作用力方向刚度增加。通过将质膜与其下方的细胞骨架的力学响应解耦,我们发现这两个组件在病理条件下均表现出改变的特性。纳米级多参数成像还揭示了在健康和病理条件下均表现出与整体膜不同力学特性的脂膜结构域。借助相关的原子力显微镜-荧光成像,我们在红细胞表面识别出了具有可变刚度的亚微米级富含鞘磷脂的脂膜结构域。我们的实验为红细胞质膜的纳米级组织与其纳米力学特性之间的相互作用提供了新的见解。总体而言,这项工作有助于更好地理解细胞纳米级组织、细胞纳米力学之间的复杂关系,以及这种三维组织在病理条件下是如何改变的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验