Institute of Life Sciences, Université catholique de Louvain , Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium.
Department of Biosystems Science and Engineering, ETH Zürich , Mattenstrasse 28, 4056 Basel, Switzerland.
Acc Chem Res. 2017 Apr 18;50(4):924-931. doi: 10.1021/acs.accounts.6b00638. Epub 2017 Mar 28.
There is a need in biochemical research for new tools that can image and manipulate biomolecular and cellular systems at the nanoscale. During the past decades, there has been tremendous progress in developing atomic force microscopy (AFM) techniques to analyze biosystems, down to the single-molecule level. Force-distance (FD) curve-based AFM in particular has enabled researchers to map and quantify biophysical properties and biomolecular interactions on a wide variety of specimens. Despite its great potential, this AFM method has long been limited by its low spatial and temporal resolutions. Recently, novel FD-based multiparametric imaging modalities have been developed, allowing us to simultaneously image the structure, elasticity and interactions of biological samples at high spatiotemporal resolution. By oscillating the AFM tip, spatially resolved FD curves are obtained at much higher frequency than before, and as a result, samples are mapped at a speed similar to that of conventional topographic imaging. In this Account, we discuss the general principle of multiparametric AFM imaging and we provide a snapshot of recent studies showing how this new technology has been applied to biological specimens, from soluble proteins to membranes and cells. We emphasize novel methodologies that we recently developed, in which multiparametric imaging is combined with probes functionalized with chemical groups, ligands, or even live cells, in order to image and quantify receptor interaction forces and free-energy landscapes in a way not possible before. Key breakthroughs include observing the mechanical and chemical properties of single proteins in purple membranes, measuring the electrostatic potential of transmembrane pore forming proteins, structurally localizing chemical groups of water-soluble proteins, mapping and nanomechanical analysis of single sensors on yeast cells, imaging the sites of assembly and extrusion of single filamentous bacteriophages in living bacteria, unravelling the adhesive properties of biofilm-forming microbial pathogens, mapping the ligand-binding free energy landscape of human membrane receptors in proteoliposomes, and finally, the nanomechanical mapping of the first binding events of viruses to animal cells. In the coming years, it is anticipated that multiparametric AFM imaging will be increasingly used by chemists from broad horizons, enabling them to shed light into the sophisticated functions of biomolecular and cellular systems.
在生物化学研究中,需要新的工具来对纳米尺度的生物分子和细胞系统进行成像和操作。在过去的几十年中,人们在开发原子力显微镜(AFM)技术以分析生物系统方面取得了巨大进展,甚至可以达到单分子水平。特别是基于力-距离(FD)曲线的 AFM 技术,使得研究人员能够在广泛的样本上绘制和量化生物物理特性和生物分子相互作用。尽管这种 AFM 方法具有很大的潜力,但长期以来一直受到其空间和时间分辨率低的限制。最近,已经开发出了新型基于 FD 的多参数成像模式,可以让我们以高时空分辨率同时对生物样本的结构、弹性和相互作用进行成像。通过振荡 AFM 探针,可以以比以前高得多的频率获得空间分辨 FD 曲线,结果是,样本的映射速度与传统形貌成像相似。在本报告中,我们讨论了多参数 AFM 成像的一般原理,并提供了一些最近的研究结果快照,展示了这项新技术如何应用于从可溶性蛋白到膜和细胞的生物样本。我们强调了我们最近开发的新方法,其中多参数成像与用化学基团、配体甚至活细胞功能化的探针相结合,以以前不可能的方式成像和量化受体相互作用力和自由能景观。关键的突破包括观察紫膜中单蛋白的机械和化学性质、测量跨膜孔形成蛋白的静电势、结构定位水溶性蛋白的化学基团、在酵母细胞上绘制和纳米力学分析单个传感器、在活细菌中成像单个丝状噬菌体的组装和挤出部位、揭示生物膜形成微生物病原体的粘附特性、在脂质体中绘制人膜受体的配体结合自由能景观、以及最后,病毒与动物细胞结合的第一个结合事件的纳米力学绘图。在未来几年,预计来自广泛领域的化学家将越来越多地使用多参数 AFM 成像,使他们能够揭示生物分子和细胞系统的复杂功能。