Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.
J Mater Chem B. 2019 Jan 28;7(4):556-565. doi: 10.1039/c8tb01504j. Epub 2019 Jan 2.
Alginate has been a biologically viable option for controlled local delivery of bioactive molecules in vitro and in vivo. Specific bioactive molecule release profiles are achieved often by controlling polymer composition/concentration, which also determines the modulus of hydrogels. This largely limits alginate-mediated bioactive molecule delivery to single-factors of uniform concentration applications, rather than applications that may require (multiple) bioactive molecules delivered at a concentration gradient for chemotactic purposes. Here we report a two-phase PLGA/alginate delivery system composed of protein-laden poly-d,l-lactic-co-glycolic acid (PLGA) microspheres wet-spun into alginate fibres. Fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA) was used as a model protein and the developed structures were characterized. The fabrication system devised was shown to produce wet-spun fibres with a protein concentration gradient (G-Alg/PLGA fibre). The two-phase delivery matrices display retarded FITC-BSA release in both initial and late stages compared to release from the PLGA microspheres or alginate fibre alone. In addition, incorporation of higher concentrations of protein-loaded PLGA microspheres increased protein release compared to the fibres with lower concentrations of BSA-loaded microspheres. The "programmable" microsphere concentration gradient fibre methodology presented here may enable development of novel alginate scaffolds with the ability to guide tissue regeneration through tightly-controlled release of one or more proteins in highly defined spatio-temporal configurations.
海藻酸盐一直是体外和体内控制生物活性分子局部递送的一种有生命力的选择。通过控制聚合物组成/浓度通常可以实现特定的生物活性分子释放曲线,这也决定了水凝胶的模量。这在很大程度上限制了海藻酸盐介导的生物活性分子传递仅限于单一均匀浓度应用的因素,而不是可能需要(多个)生物活性分子以浓度梯度递送来达到趋化作用的应用。在这里,我们报告了一种由载蛋白的聚(D,L-丙交酯-共-乙交酯)(PLGA)微球纺成海藻酸盐纤维组成的两相 PLGA/海藻酸盐递释系统。荧光素异硫氰酸酯(FITC)标记的牛血清白蛋白(FITC-BSA)被用作模型蛋白,并对所开发的结构进行了表征。所设计的制造系统能够生产出具有蛋白浓度梯度(G-Alg/PLGA 纤维)的湿法纺丝纤维。与单独的 PLGA 微球或海藻酸盐纤维相比,两相递释基质在初始和后期均表现出 FITC-BSA 释放延迟。此外,与负载 BSA 浓度较低的微球的纤维相比,掺入较高浓度的载蛋白 PLGA 微球会增加蛋白释放。本文提出的“可编程”微球浓度梯度纤维方法学可能能够开发出具有通过在高度定义的时空配置中以受控方式释放一种或多种蛋白质来指导组织再生的能力的新型海藻酸盐支架。