Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
Analyst. 2020 May 7;145(9):3424-3430. doi: 10.1039/d0an00018c. Epub 2020 Apr 7.
Additive manufacturing is a promising technology for the rapid and economical fabrication of portable electroanalytical devices. In this paper we seek to determine how our bespoke additive manufacturing feedstocks act as the basis of an electrochemical sensing platform towards the sensing of manganese(ii) via differential pulse cathodic stripping voltammetry (DPCSV), despite the electrode comprising only 25 wt% nanographite and 75 wt% plastic (polylactic acid). The Additive Manufactured electrodes (AM-electrodes) are also critically compared to graphite screen-printed macroelectrodes (SPEs) and both are explored in model and real tap-water samples. Using optimized DPCSV conditions at pH 6.0, the analytical outputs using the AM-electrodes are as follows: limit of detection, 1.6 × 10 mol L (0.09 μg L); analytical sensitivity, 3.4 μA V μmol L; linear range, 9.1 × 10 mol L to 2.7 × 10 mol L (R = 0.998); and RSD 4.9% (N = 10 for 1 μmol L). These results are compared to screen-printed macroelectrodes (SPEs) giving comparable results providing confidence that AM-electrodes can provide the basis for useful electrochemical sensing platforms. The proposed electroanalytical method (both AM-electrodes and SPEs) is shown to be successfully applied for the determination of manganese(ii) in tap water samples and in the analysis of a certified material (drinking water). The proposed method is feasible to be applied for in-loco analyses due to the portability of sensing; in addition, the use of AM-printed electrodes is attractive due to their low cost.
增材制造是一种很有前途的技术,可用于快速经济地制造便携式电分析设备。在本文中,我们试图确定我们定制的增材制造原料如何作为电化学传感平台的基础,通过差分脉冲阴极溶出伏安法(DPCSV)来检测锰(II),尽管电极仅包含 25wt%纳米石墨和 75wt%塑料(聚乳酸)。增材制造电极(AM 电极)也与石墨丝网印刷宏观电极(SPE)进行了严格比较,并在模型和实际自来水样品中进行了探索。使用优化的 DPCSV 条件在 pH 6.0 下,使用 AM 电极的分析输出结果如下:检测限,1.6×10-6mol L(0.09μg L);分析灵敏度,3.4μA V μmol L;线性范围,9.1×10-6mol L 至 2.7×10-6mol L(R = 0.998);RSD 为 4.9%(N = 10 个 1μmol L)。这些结果与丝网印刷宏观电极(SPE)进行了比较,结果相当,这表明 AM 电极可以为有用的电化学传感平台提供基础。所提出的电分析方法(AM 电极和 SPE)已成功应用于自来水中锰(II)的测定以及对认证材料(饮用水)的分析。由于传感的便携性,该方法可用于现场分析;此外,由于 AM 印刷电极成本低,因此其具有吸引力。