Suppr超能文献

利用数据科学推动放射肿瘤学发展。

Harnessing data science to advance radiation oncology.

作者信息

Vogelius Ivan R, Petersen Jens, Bentzen Søren M

机构信息

Deptartment of Oncology, Rigshospitalet, Copenhagen, Denmark.

Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.

出版信息

Mol Oncol. 2020 Jul;14(7):1514-1528. doi: 10.1002/1878-0261.12685. Epub 2020 May 18.

Abstract

Radiation oncology, a major treatment modality in the care of patients with malignant disease, is a technology- and computer-intensive medical specialty. As such, it should lend itself ideally to data science methods, where computer science, statistics, and clinical knowledge are combined to advance state-of-the-art care. Nevertheless, data science methods in radiation oncology research are still in their infancy and successful applications leading to improved patient care remain scarce. Here, we discuss data interoperability issues within and across organizational boundaries that hamper the introduction of big data and data science techniques in radiation oncology. At the semantic level, creating common underlying models and codification of the data, including the use of data elements with standardized definitions, an ontology, remains a work in progress. Methodological issues in data science and in the use of large population-based health data registries are identified. We show that data science methods and big data cannot replace randomized clinical trials in comparative effectiveness research by reviewing a series of instances where the outcomes of big data analyses and randomized trials are at odds. We also discuss the modern wave of machine learning and artificial intelligence as represented by deep learning and convolutional neural networks. Finally, we identify promising research avenues and remain optimistic that the data sources in radiation oncology can be linked to yield important insights in the near future. We argue that data science will be a valuable complement to, but not a replacement of, the traditional hypothesis-driven translational research chain and the randomized clinical trials that form the backbone of evidence-based medicine.

摘要

放射肿瘤学是恶性疾病患者治疗的主要方式,是一个技术和计算机密集型的医学专业。因此,它非常适合采用数据科学方法,即将计算机科学、统计学和临床知识相结合,以推动先进的医疗护理。然而,放射肿瘤学研究中的数据科学方法仍处于起步阶段,能够改善患者护理的成功应用仍然很少。在此,我们讨论组织内部和组织之间的数据互操作性问题,这些问题阻碍了大数据和数据科学技术在放射肿瘤学中的引入。在语义层面,创建通用的基础模型和数据编码,包括使用具有标准化定义的数据元素(本体),仍在进行中。我们还确定了数据科学以及使用基于大量人群的健康数据登记处的方法学问题。通过回顾一系列大数据分析结果与随机试验结果不一致的案例,我们表明数据科学方法和大数据不能取代比较效果研究中的随机临床试验。我们还讨论了以深度学习和卷积神经网络为代表的现代机器学习和人工智能浪潮。最后,我们确定了有前景的研究途径,并对放射肿瘤学中的数据源能够在不久的将来相互关联以产生重要见解保持乐观态度。我们认为,数据科学将是传统的假设驱动的转化研究链以及构成循证医学基础的随机临床试验的宝贵补充,但不是替代品。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aba4/7332210/8c5cb625426f/MOL2-14-1514-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验