Suppr超能文献

绵羊肱骨组织区室化和骨型分布的个体发生变化。

Ontogenetic changes of tissue compartmentalization and bone type distribution in the humerus of Soay sheep.

机构信息

Department of Biology, University of Hildesheim, Hildesheim, Germany.

Tierpark Arche Warder e.V., Warder, Germany.

出版信息

J Anat. 2020 Aug;237(2):334-354. doi: 10.1111/joa.13194. Epub 2020 Apr 7.

Abstract

We studied ontogenetic changes of histomorphological features and bone type distribution in the humeral midshaft region of Soay sheep from three postnatal age classes (13, 25, and 33 months). Our study demonstrated a marked change of bone type distribution in the humeri with age. In the cortical midshaft region of 13-month-old individuals, periosteal fibrolamellar bone was the dominating bone type. This indicates a rapid bone growth during the first year of life, which was only interrupted by a seasonal growth arrest in the animals' first winter. In individuals from the two older age classes, periosteal lamellar-zonal bone and intermediate fibrolamellar bone had been formed at the periosteal surface, and endosteal lamellar-zonal bone at the endosteal surface. These bone types are indicative of a reduced bone growth rate. A marked reduction in radial growth was already recorded in the 25-month-old individuals. Distribution and extent of secondary bone showed a marked bilateral symmetry in the humeri of individual sheep. The presence of secondary bone was largely restricted to the anterior (cranial) and the medial cortical areas. This characteristic distribution of remodeling activity within the humeral cortex of sheep is consistent with the view that remodeling activity is largely caused by compressive stress. Our study further demonstrated the presence of a considerable cortical drift in the sheep humeri over the study period, with endosteal resorption occurring predominantly in the posterior (caudal) quadrant and formation of a prominent endosteal lamellar pocket in the anterior (cranial) and medial cortical quadrants.

摘要

我们研究了三个产后年龄组(13、25 和 33 个月)的斯澳绵羊肱骨中轴区组织形态特征和骨型分布的个体发育变化。我们的研究表明,随着年龄的增长,肱骨中的骨型分布发生了显著变化。在 13 月龄个体的皮质中轴区,骨膜纤维层状骨是主要的骨型。这表明在生命的第一年中骨骼生长迅速,仅在动物的第一个冬季被季节性生长停滞所打断。在年龄较大的两个年龄组的个体中,骨膜层状-周状骨和中间纤维层状骨已经在骨膜表面形成,而骨内膜层状-周状骨则在骨内膜表面形成。这些骨型表明骨骼生长速度降低。在 25 月龄的个体中已经记录到明显的径向生长减少。次级骨的分布和程度在个体绵羊的肱骨中表现出明显的双侧对称性。次级骨的存在主要局限于前(颅侧)和内侧皮质区域。绵羊肱骨皮质内重塑活动的这种特征性分布与重塑活动主要由压缩应力引起的观点一致。我们的研究进一步表明,在研究期间,绵羊肱骨存在相当大的皮质漂移,骨内膜吸收主要发生在后(尾侧)象限,在前(颅侧)和内侧皮质象限形成明显的骨内膜层状袋。

相似文献

1
Ontogenetic changes of tissue compartmentalization and bone type distribution in the humerus of Soay sheep.
J Anat. 2020 Aug;237(2):334-354. doi: 10.1111/joa.13194. Epub 2020 Apr 7.
2
Long bone histomorphogenesis of the naked mole-rat: Histodiversity and intraspecific variation.
J Anat. 2021 Jun;238(6):1259-1283. doi: 10.1111/joa.13381. Epub 2020 Dec 11.
3
Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis.
Osteoporos Int. 2003;14 Suppl 3:S2-8. doi: 10.1007/s00198-002-1340-9. Epub 2003 Mar 19.
4
Drifting Diaphyses: Asymmetry in Diametric Growth and Adaptation Along the Humeral and Femoral Length.
Anat Rec (Hoboken). 2015 Oct;298(10):1689-99. doi: 10.1002/ar.23201. Epub 2015 Aug 17.
5
7
Biomechanical implications of mineral content and microstructural variations in cortical bone of horse, elk, and sheep calcanei.
Anat Rec. 1997 Nov;249(3):297-316. doi: 10.1002/(SICI)1097-0185(199711)249:3<297::AID-AR1>3.0.CO;2-S.

引用本文的文献

1
Adaptive Image Segmentation Reveals Substantial Cortical Bone Remodeling During Early Fracture Repair.
Comput Methods Biomech Biomed Eng Imaging Vis. 2024;12(1). doi: 10.1080/21681163.2024.2345165. Epub 2024 May 1.
2
Long bone histomorphogenesis of the naked mole-rat: Histodiversity and intraspecific variation.
J Anat. 2021 Jun;238(6):1259-1283. doi: 10.1111/joa.13381. Epub 2020 Dec 11.

本文引用的文献

3
Limb bone histology records birth in mammals.
PLoS One. 2018 Jun 20;13(6):e0198511. doi: 10.1371/journal.pone.0198511. eCollection 2018.
4
Multiple osteochondromas of the antlers and cranium in a free-ranging white-tailed deer (Odocoileus virginianus).
PLoS One. 2017 Mar 15;12(3):e0173775. doi: 10.1371/journal.pone.0173775. eCollection 2017.
5
Collagen Fiber Orientation in Primate Long Bones.
Anat Rec (Hoboken). 2017 Jul;300(7):1189-1207. doi: 10.1002/ar.23571. Epub 2017 Mar 31.
6
Revisiting the links between bone remodelling and osteocytes: insights from across phyla.
Biol Rev Camb Philos Soc. 2017 Aug;92(3):1702-1719. doi: 10.1111/brv.12302. Epub 2016 Nov 14.
7
Primary bone microanatomy records developmental aspects of life history in catarrhine primates.
J Hum Evol. 2016 Mar;92:60-79. doi: 10.1016/j.jhevol.2015.12.004. Epub 2016 Mar 10.
8
Osteocytes: The master cells in bone remodelling.
Curr Opin Pharmacol. 2016 Jun;28:24-30. doi: 10.1016/j.coph.2016.02.003. Epub 2016 Feb 27.
10
Haversian microstructure in bovine femoral cortices: An adaptation for improved compressive strength.
Mater Sci Eng C Mater Biol Appl. 2016 Feb;59:454-463. doi: 10.1016/j.msec.2015.10.047. Epub 2015 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验