Suppr超能文献

基于空位的缺陷调控实现GeSbTe化合物的高热电性能

Vacancy-Based Defect Regulation for High Thermoelectric Performance in GeSbTe Compounds.

作者信息

Chen Shuo, Bai Hui, Li Junjie, Pan Wenfeng, Jiang Xianyan, Li Zhi, Chen Zhiquan, Yan Yonggao, Su Xianli, Wu Jinsong, Uher Ctirad, Tang Xinfeng

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072, China.

出版信息

ACS Appl Mater Interfaces. 2020 Apr 29;12(17):19664-19673. doi: 10.1021/acsami.0c02155. Epub 2020 Apr 17.

Abstract

Defect engineering is the core strategy for improving thermoelectric properties. Herein, cation doping along with modulation of cation vacancy has been developed in GeTe-based materials as an effective method to induce vacancy-based defects to boost their thermoelectric performance. A series of ternary compounds of GeSbTe ( = 0, 0.03, 0.06, 0.09, 0.12, 0.15) was prepared by vacuum-melting and annealing combined with the spark plasma sintering (SPS) process. The role of Sb doping and cation vacancy on thermoelectric properties was systematically investigated. It is found that alloying SbTe into GeTe increases the concentration of cation vacancies, which is corroborated by both positron annihilation measurements and theoretical calculations. The vacancies, stacking faults, and planar defect interactions determine the thermoelectric transport properties. Adjusting the deficiency of Te effectively tunes the concentration of cation vacancies and dopant defects in the structure. In turn, this tunes the carrier concentration close to its optimum. A high power factor of 32.6 μW cm K is realized for GeSbTe at 725 K. Moreover, large strains induced by the defect structures, including Sb dopant, vacancy, staking faults, as well as planar defects intensify phonon scattering, leading to a significant decrease in the thermal conductivity from 7.6 W m K for pristine GeTe to 1.18 W m K for GeSbTe at room temperature. All of the above contribute to a high value of 2.1 achieved for the GeSbTe sample at 775 K.

摘要

缺陷工程是改善热电性能的核心策略。在此,在基于GeTe的材料中开发了阳离子掺杂以及阳离子空位调制,作为一种诱导基于空位的缺陷以提高其热电性能的有效方法。通过真空熔炼和退火结合放电等离子烧结(SPS)工艺制备了一系列GeSbTe( = 0, 0.03, 0.06, 0.09, 0.12, 0.15)的三元化合物。系统研究了Sb掺杂和阳离子空位对热电性能的作用。研究发现,将SbTe合金化到GeTe中会增加阳离子空位的浓度,正电子湮没测量和理论计算均证实了这一点。空位、堆垛层错和平面缺陷相互作用决定了热电输运性能。有效调节Te的不足可以调节结构中阳离子空位和掺杂剂缺陷的浓度。进而,这将载流子浓度调节至接近其最佳值。在725 K时,GeSbTe实现了32.6 μW cm K的高功率因子。此外,由缺陷结构(包括Sb掺杂剂、空位、堆垛层错以及平面缺陷)引起的大应变会加剧声子散射,导致室温下热导率从原始GeTe的7.6 W m K显著降低至GeSbTe的1.18 W m K。上述所有因素共同促成了GeSbTe样品在775 K时达到2.1的高 值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验