Suppr超能文献

贝叶斯综合分析表观基因组和转录组数据,确定阿尔茨海默病候选基因和网络。

Bayesian integrative analysis of epigenomic and transcriptomic data identifies Alzheimer's disease candidate genes and networks.

机构信息

Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America.

Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America.

出版信息

PLoS Comput Biol. 2020 Apr 7;16(4):e1007771. doi: 10.1371/journal.pcbi.1007771. eCollection 2020 Apr.

Abstract

Biomedical research studies have generated large multi-omic datasets to study complex diseases like Alzheimer's disease (AD). An important aim of these studies is the identification of candidate genes that demonstrate congruent disease-related alterations across the different data types measured by the study. We developed a new method to detect such candidate genes in large multi-omic case-control studies that measure multiple data types in the same set of samples. The method is based on a gene-centric integrative coefficient quantifying to what degree consistent differences are observed in the different data types. For statistical inference, a Bayesian hierarchical model is used to study the distribution of the integrative coefficient. The model employs a conditional autoregressive prior to integrate a functional gene network and to share information between genes known to be functionally related. We applied the method to an AD dataset consisting of histone acetylation, DNA methylation, and RNA transcription data from human cortical tissue samples of 233 subjects, and we detected 816 genes with consistent differences between persons with AD and controls. The findings were validated in protein data and in RNA transcription data from two independent AD studies. Finally, we found three subnetworks of jointly dysregulated genes within the functional gene network which capture three distinct biological processes: myeloid cell differentiation, protein phosphorylation and synaptic signaling. Further investigation of the myeloid network indicated an upregulation of this network in early stages of AD prior to accumulation of hyperphosphorylated tau and suggested that increased CSF1 transcription in astrocytes may contribute to microglial activation in AD. Thus, we developed a method that integrates multiple data types and external knowledge of gene function to detect candidate genes, applied the method to an AD dataset, and identified several disease-related genes and processes demonstrating the usefulness of the integrative approach.

摘要

生物医学研究产生了大量多组学数据集,以研究阿尔茨海默病(AD)等复杂疾病。这些研究的一个重要目标是确定候选基因,这些基因在研究中测量的不同数据类型中表现出一致的疾病相关改变。我们开发了一种新方法,用于在测量相同样本中多种数据类型的大型多组学病例对照研究中检测此类候选基因。该方法基于基因中心的综合系数,该系数量化了在不同数据类型中观察到的一致差异程度。为了进行统计推断,使用贝叶斯层次模型来研究综合系数的分布。该模型采用条件自回归先验来整合功能基因网络,并在已知功能相关的基因之间共享信息。我们将该方法应用于包含 233 名受试者的人类皮质组织样本的组蛋白乙酰化、DNA 甲基化和 RNA 转录数据的 AD 数据集,并且检测到 816 个在 AD 患者和对照组之间具有一致差异的基因。在蛋白质数据和两个独立的 AD 研究的 RNA 转录数据中验证了这些发现。最后,我们在功能基因网络中发现了三个共同失调基因的子网络,这些子网络捕获了三个不同的生物学过程:髓样细胞分化、蛋白质磷酸化和突触信号。对髓样网络的进一步研究表明,该网络在 AD 患者中出现异常,在过度磷酸化 tau 积累之前就出现了异常,并且 AD 患者中星形胶质细胞中 CSF1 转录增加可能导致小胶质细胞激活。因此,我们开发了一种整合多种数据类型和基因功能的外部知识的方法来检测候选基因,将该方法应用于 AD 数据集,并确定了几个与疾病相关的基因和过程,证明了综合方法的有用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15a1/7138305/e379def29f65/pcbi.1007771.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验