Suppr超能文献

使用具有12个标记基因的福尔马林固定石蜡包埋RNA测序来评估遗传毒性和非遗传毒性大鼠肝癌致癌物。

Using FFPE RNA-Seq with 12 marker genes to evaluate genotoxic and non-genotoxic rat hepatocarcinogens.

作者信息

Furihata Chie, You Xinyue, Toyoda Takeshi, Ogawa Kumiko, Suzuki Takayoshi

机构信息

1Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, 210-9501 Japan.

2School of Science and Engineering, Aoyama Gakuin University, Sagamihara, Sagamihara, Kanagawa 252-5258 Japan.

出版信息

Genes Environ. 2020 Mar 30;42:15. doi: 10.1186/s41021-020-00152-4. eCollection 2020.

Abstract

INTRODUCTION

Various challenges have been overcome with regard to applying 'omics technologies for chemical risk assessments. Previously we published results detailing targeted mRNA sequencing (RNA-Seq) on a next generation sequencer using intact RNA derived from freshly frozen rat liver tissues. We successfully discriminated genotoxic hepatocarcinogens (GTHCs) from non-genotoxic hepatocarcinogens (NGTHCs) using 11 selected marker genes. Based on this, we next attempted to use formalin-fixed paraffin-embedded (FFPE) pathology specimens for RNA-Seq analyses.

FINDINGS

In this study we performed FFPE RNA-Seq to compare a typical GTHC, 2-acetylaminofluorene (AAF) to genotoxicity equivocal -cresidine (CRE). CRE is used as a synthetic chemical intermediate, and this compound is classified as an IARC 2B carcinogen and is mutagenic in , which is non-genotoxic to rat livers as assessed by single strand DNA damage analysis. RNA-Seq was used to examine liver FFPE samples obtained from groups of five 10-week-old male F344 rats that were fed with chemicals (AAF: 0.025% and CRE: 1% in food) for 4 weeks or from controls that were fed a basal diet. We extracted RNAs from FFPE samples and RNA-Seq was performed on a MiniSeq (Illumina) using the TruSeq custom RNA panel. AAF induced remarkable differences in the expression of eight genes (Aen, , , , , , and ) from that in the control group, while CRE only induced expression changes in , as shown using Tukey's test. Gene expression profiles for nine genes (, , , , , , , , and ) differed.between samples treated with AAF and CRE. Finally, principal component analysis (PCA) of 12 genes (, , , , , , , , , , , and ) using our previous Open TG-GATE data plus FFPE-AAF and FFPE-CRE successfully differentiated FFPE-AAF, as GTHC, from FFPE-CRE, as NGHTC.

CONCLUSION

Our results suggest that FFPE RNA-Seq and PCA are useful for evaluating typical rat GTHCs and NGTHCs.

摘要

引言

在将“组学”技术应用于化学风险评估方面,已经克服了各种挑战。此前,我们发表了详细的研究结果,介绍了使用源自新鲜冷冻大鼠肝脏组织的完整RNA在新一代测序仪上进行靶向mRNA测序(RNA-Seq)的情况。我们使用11个选定的标记基因成功地区分了遗传毒性肝癌致癌物(GTHC)和非遗传毒性肝癌致癌物(NGTHC)。基于此,我们接下来尝试使用福尔马林固定石蜡包埋(FFPE)病理标本进行RNA-Seq分析。

研究结果

在本研究中,我们进行了FFPE RNA-Seq,以比较典型的GTHC 2-乙酰氨基芴(AAF)和遗传毒性不明确的间甲酚紫(CRE)。CRE用作合成化学中间体,该化合物被归类为国际癌症研究机构(IARC)2B类致癌物,并且在Ames试验中具有致突变性,但通过单链DNA损伤分析评估,其对大鼠肝脏无遗传毒性。RNA-Seq用于检测从五组10周龄雄性F344大鼠中获取的肝脏FFPE样本,这些大鼠分别喂食含有化学物质(AAF:食物中0.025%,CRE:食物中1%)4周,或喂食基础饮食作为对照。我们从FFPE样本中提取RNA,并使用TruSeq定制RNA面板在MiniSeq(Illumina)上进行RNA-Seq。如使用Tukey检验所示,AAF诱导了八个基因(Aen、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]和[此处原文缺失基因名称])相对于对照组表达的显著差异,而CRE仅诱导了[此处原文缺失基因名称]的表达变化。在用AAF和CRE处理的样本之间,九个基因([此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]和[此处原文缺失基因名称])的基因表达谱存在差异。最后,使用我们之前的Open TG-GATE数据加上FFPE-AAF和FFPE-CRE对12个基因([此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]、[此处原文缺失基因名称]和[此处原文缺失基因名称])进行主成分分析(PCA),成功地将作为GTHC的FFPE-AAF与作为NGHTC的FFPE-CRE区分开来。

结论

我们的结果表明,FFPE RNA-Seq和PCA可用于评估典型的大鼠GTHC和NGHTC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8345/7104499/1c5f16737226/41021_2020_152_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验