文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

PreMSIm:一个用于通过癌症中基因面板的表达谱预测微卫星不稳定性的R包。

PreMSIm: An R package for predicting microsatellite instability from the expression profiling of a gene panel in cancer.

作者信息

Li Lin, Feng Qiushi, Wang Xiaosheng

机构信息

Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.

Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.

出版信息

Comput Struct Biotechnol J. 2020 Mar 19;18:668-675. doi: 10.1016/j.csbj.2020.03.007. eCollection 2020.


DOI:10.1016/j.csbj.2020.03.007
PMID:32257050
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7113609/
Abstract

Microsatellite instability (MSI) is a genomic property of the cancers with defective DNA mismatch repair and is a useful marker for cancer diagnosis and treatment in diverse cancer types. In particular, MSI has been associated with the active immune checkpoint blockade therapy response in cancer. Most of computational methods for predicting MSI are based on DNA sequencing data and a few are based on mRNA expression data. Using the RNA-Seq pan-cancer datasets for three cancer cohorts (colon, gastric, and endometrial cancers) from The Cancer Genome Atlas (TCGA) program, we developed an algorithm (PreMSIm) for predicting MSI from the expression profiling of a 15-gene panel in cancer. We demonstrated that PreMSIm had high prediction performance in predicting MSI in most cases using both RNA-Seq and microarray gene expression datasets. Moreover, PreMSIm displayed superior or comparable performance versus other DNA or mRNA-based methods. We conclude that PreMSIm has the potential to provide an alternative approach for identifying MSI in cancer.

摘要

微卫星不稳定性(MSI)是DNA错配修复缺陷型癌症的一种基因组特性,是多种癌症类型中癌症诊断和治疗的有用标志物。特别是,MSI与癌症中活跃的免疫检查点阻断治疗反应相关。大多数预测MSI的计算方法基于DNA测序数据,少数基于mRNA表达数据。利用来自癌症基因组图谱(TCGA)项目的三个癌症队列(结肠癌、胃癌和子宫内膜癌)的RNA测序泛癌数据集,我们开发了一种算法(PreMSIm),用于从癌症中15个基因的表达谱预测MSI。我们证明,在大多数情况下,使用RNA测序和微阵列基因表达数据集,PreMSIm在预测MSI方面具有很高的预测性能。此外,与其他基于DNA或mRNA的方法相比,PreMSIm表现出优越或相当的性能。我们得出结论,PreMSIm有可能为识别癌症中的MSI提供一种替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f510/7113609/043ba0c6bc41/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f510/7113609/d57bbfa674da/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f510/7113609/773241251dc6/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f510/7113609/00879ce4a24f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f510/7113609/9ec4e016982f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f510/7113609/043ba0c6bc41/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f510/7113609/d57bbfa674da/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f510/7113609/773241251dc6/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f510/7113609/00879ce4a24f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f510/7113609/9ec4e016982f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f510/7113609/043ba0c6bc41/gr4.jpg

相似文献

[1]
PreMSIm: An R package for predicting microsatellite instability from the expression profiling of a gene panel in cancer.

Comput Struct Biotechnol J. 2020-3-19

[2]
Identification of SHCBP1 as a potential biomarker involving diagnosis, prognosis, and tumor immune microenvironment across multiple cancers.

Comput Struct Biotechnol J. 2022-6-18

[3]
Violations of proportional hazard assumption in Cox regression model of transcriptomic data in TCGA pan-cancer cohorts.

Comput Struct Biotechnol J. 2022-1-7

[4]
APOBEC3C is a novel target for the immune treatment of lower-grade gliomas.

Neurol Res. 2024-3

[5]
Integrative omics analysis reveals relationships of genes with synthetic lethal interactions through a pan-cancer analysis.

Comput Struct Biotechnol J. 2020-10-21

[6]
Advancing Pan-cancer Gene Expression Survial Analysis by Inclusion of Non-coding RNA.

RNA Biol. 2020-11

[7]
The molecular feature of macrophages in tumor immune microenvironment of glioma patients.

Comput Struct Biotechnol J. 2021-8-14

[8]
Comprehensive analysis of tumor necrosis factor-α-inducible protein 8-like 2 (TIPE2): A potential novel pan-cancer immune checkpoint.

Comput Struct Biotechnol J. 2022-9-17

[9]
Rewired functional regulatory networks among miRNA isoforms (isomiRs) from let-7 and miR-10 gene families in cancer.

Comput Struct Biotechnol J. 2020-5-13

[10]
Pan-Cancer Analysis of PARP1 Alterations as Biomarkers in the Prediction of Immunotherapeutic Effects and the Association of Its Expression Levels and Immunotherapy Signatures.

Front Immunol. 2021

引用本文的文献

[1]
The Expression Characteristics of the RBFOX1 Gene in Colorectal Cancer.

Technol Cancer Res Treat. 2025

[2]
PRMT5 Inhibitor Synergizes with Chemotherapy to Induce Resembling Mismatch Repair Deficiency and Enhance Anti-TIGIT Therapy in Microsatellite-Stable Colorectal Cancer.

Adv Sci (Weinh). 2025-7

[3]
Identification of USP39 as a prognostic and predictive biomarker for determining the response to immunotherapy in pancreatic cancer.

BMC Cancer. 2025-4-22

[4]
Integration of graph neural networks and transcriptomics analysis identify key pathways and gene signature for immunotherapy response and prognosis of skin melanoma.

BMC Cancer. 2025-4-9

[5]
Molecular and functional profiling unravels targetable vulnerabilities in colorectal cancer.

Mol Oncol. 2025-6

[6]
Integration of Graph Neural Networks and multi-omics analysis identify the predictive factor and key gene for immunotherapy response and prognosis of bladder cancer.

J Transl Med. 2024-12-23

[7]
MSIsensor-RNA: Microsatellite Instability Detection for Bulk and Single-cell Gene Expression Data.

Genomics Proteomics Bioinformatics. 2024-9-13

[8]
DNA damage response in breast cancer and its significant role in guiding novel precise therapies.

Biomark Res. 2024-9-27

[9]
Detecting microsatellite instability by length comparison of microsatellites in the 3' untranslated region with RNA-seq.

Brief Bioinform. 2024-7-25

[10]
Performance assessment of computational tools to detect microsatellite instability.

Brief Bioinform. 2024-7-25

本文引用的文献

[1]
Microsatellite instability detection using a large next-generation sequencing cancer panel across diverse tumour types.

J Clin Pathol. 2019-9-17

[2]
Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.

Nat Med. 2019-6-3

[3]
Cross-platform Data Analysis Reveals a Generic Gene Expression Signature for Microsatellite Instability in Colorectal Cancer.

Biomed Res Int. 2019-3-17

[4]
Microsatellite Instability and Altered Expressions of MLH1 and MSH2 in Gastric Cancer.

Asian Pac J Cancer Prev. 2019-2-26

[5]
A gene expression assay for simultaneous measurement of microsatellite instability and anti-tumor immune activity.

J Immunother Cancer. 2019-1-21

[6]
STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.

Nucleic Acids Res. 2019-1-8

[7]
Landscape of Microsatellite Instability Across 39 Cancer Types.

JCO Precis Oncol. 2017

[8]
Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS.

Oncotarget. 2017-1-31

[9]
Classification and characterization of microsatellite instability across 18 cancer types.

Nat Med. 2016-10-3

[10]
PD-1 Blockade in Tumors with Mismatch-Repair Deficiency.

N Engl J Med. 2015-6-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索