Suppr超能文献

长期护理环境中整群随机试验的协变量受限随机化:在TRAIN-AD试验中的应用

Covariate-constrained randomization for cluster randomized trials in the long-term care setting: Application to the TRAIN-AD trial.

作者信息

Shaffer Michele L, D'Agata Erika M C, Habtemariam Daniel, Mitchell Susan L

机构信息

Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA.

Frank Statistical Consulting LLC, Vashon, WA, USA.

出版信息

Contemp Clin Trials Commun. 2020 Mar 17;18:100558. doi: 10.1016/j.conctc.2020.100558. eCollection 2020 Jun.

Abstract

UNLABELLED

Little has been reported on strategies to ensure key covariate balance in cluster randomized trials in the nursing home setting. Facilities vary widely on key characteristics, small numbers may be randomized, and staggered enrollment is often necessary. A covariate-constrained algorithm was used to randomize facilities in the Trial to Reduce Antimicrobial use In Nursing home residents with Alzheimer's Disease and other Dementias (TRAIN-AD), an ongoing trial in Boston-area facilities (14 facilities/arm). Publicly available 2015 LTCfocus.org data were leveraged to inform the distribution of key facility-level covariates. The algorithm was applied in waves (2-8 facilities/wave) June 2017-March 2019. To examine the algorithm's general performance, simulations calculated an imbalance score (minimum 0) for similar trial designs. The algorithm provided good balance for profit status (Arm 1, 7 facilities; Arm 2, 6 facilities). Arm 2 was allocated more nursing homes with the number of severely cognitive impaired residents above the median (Arm 1, 7 facilities; Arm 2, 10 facilities), resulting in an imbalance in total number of residents enrolled (Arm 1, 196 residents; Arm 2, 228 residents). Facilities with number of black residents above the median were balanced (7 facilities/arm), while the numbers of black residents enrolled differed slightly between arms (Arm 1, 26 residents (13%); Arm 2, 22 residents (10%)). Simulations showed the median imbalance for TRAIN-AD's original randomization scheme (score = 3), was similar to the observed imbalance (score = 4). Covariate-constrained randomization flexibly accommodates logistical complexities of cluster trials in the nursing home setting, where LTCfocus.org is a valuable source of baseline data.

TRIAL REGISTRATION NUMBER AND TRIAL REGISTER

ClinicalTrials.gov Identifier: NCT03244917.

摘要

未标注

关于在养老院环境中进行整群随机试验时确保关键协变量平衡的策略,相关报道较少。各机构在关键特征方面差异很大,随机分组的数量可能很少,而且往往需要交错入组。在“减少阿尔茨海默病和其他痴呆症养老院居民抗菌药物使用试验”(TRAIN-AD)中,采用了一种协变量约束算法对机构进行随机分组,该试验正在波士顿地区的机构中进行(每组14个机构)。利用公开的2015年LTCfocus.org数据来确定关键机构层面协变量的分布。该算法在2017年6月至2019年3月期间分批次应用(每批次2 - 8个机构)。为检验该算法的总体性能,通过模拟计算了类似试验设计的不平衡分数(最小值为0)。该算法在盈利状况方面提供了良好的平衡(第1组7个机构;第2组6个机构)。第2组分配到更多重度认知障碍居民数量高于中位数的养老院(第1组7个机构;第2组10个机构),导致入组居民总数出现不平衡(第1组196名居民;第2组228名居民)。黑人居民数量高于中位数的机构数量是平衡的(每组7个机构),但两组入组的黑人居民数量略有差异(第1组26名居民(13%);第2组22名居民(10%))。模拟结果显示,TRAIN-AD原始随机分组方案的中位数不平衡分数(分数 = 3)与观察到的不平衡分数(分数 = 4)相似。协变量约束随机化灵活地适应了养老院环境中整群试验的后勤复杂性,其中LTCfocus.org是基线数据的宝贵来源。

试验注册号和试验注册机构

ClinicalTrials.gov标识符:NCT03244917。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8035/7110330/644146179779/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验