Swinton Derrick J, Zhang Hongxia, Boroujerdi Arezue F B, Tyree Keyana L, Burke Ricardo A, Turner Makayla F, Salia Imrana H, McClary Tekiah S
Department of Chemistry, Claflin University, Orangeburg, South Carolina 29115, United States.
Department of Biology, Spelman College, Atlanta, Georgia 30314, United States.
ACS Omega. 2020 Mar 20;5(12):6348-6357. doi: 10.1021/acsomega.9b03716. eCollection 2020 Mar 31.
Gold nanoparticles are utilized in a variety of sensing and detection technologies because of their unique physiochemical properties. Their tunable size, shape, and surface charge enable them to be used in an array of platforms. The purpose of this study is to conduct a thorough spectroscopic characterization of Au and functionalized hybrid Au@SiO nanoparticles under physiological conditions and in the presence of two proteins known to be abundant in serum, bovine serum albumin and human ubiquitin. The information obtained from this study will enable us to develop design principles to synthesize an array of surface-enhanced Raman spectroscopy-based nanoparticles as platforms for theranostic applications. We are particularly interested in tailoring the surface chemistry of the Au@SiO nanoparticles for applications in theranostic technologies. We employ common spectroscopic techniques, with particular emphasis on circular dichroism and heteronuclear single quantum correlation nuclear magnetic resonance (HSQC NMR) spectroscopy, as combinatorial tools to understand protein conformational dynamics, binding site interactions, and protein corona for the design of nanoparticles capable of reaching their intended target in vivo. Our results conclude that protein adsorption onto the nanoparticle surface prevents nanoparticle aggregation. We observed that varying the ionic strength and type of ion influences the aggregation and aggregation rate of each respective nanoparticle. The conformation of proteins and the absorption of proteins on the surface of Au nanoparticles are also influenced by ionic strength. Using two-dimensional [N-H]-HSQC NMR experiments to compare the interactions of Au and Au@SiO nanoparticles with N-ubiquitin, we observed small chemical shift perturbations in some amino acid peaks and differences in binding site interactions with ubiquitin and respective nanoparticles.
由于其独特的物理化学性质,金纳米颗粒被应用于各种传感和检测技术中。其可调节的尺寸、形状和表面电荷使其能够用于一系列平台。本研究的目的是在生理条件下以及存在两种已知在血清中含量丰富的蛋白质(牛血清白蛋白和人泛素)的情况下,对金(Au)和功能化的杂化金@二氧化硅(Au@SiO)纳米颗粒进行全面的光谱表征。从这项研究中获得的信息将使我们能够制定设计原则,以合成一系列基于表面增强拉曼光谱的纳米颗粒,作为治疗诊断应用的平台。我们特别感兴趣的是调整Au@SiO纳米颗粒的表面化学性质,以用于治疗诊断技术。我们采用常见的光谱技术,特别强调圆二色性和异核单量子相关核磁共振(HSQC NMR)光谱,作为组合工具来理解蛋白质构象动力学、结合位点相互作用以及蛋白质冠层,以设计能够在体内到达其预期靶点的纳米颗粒。我们的结果表明,蛋白质吸附到纳米颗粒表面可防止纳米颗粒聚集。我们观察到,改变离子强度和离子类型会影响每种纳米颗粒的聚集和聚集速率。离子强度也会影响蛋白质的构象以及蛋白质在金纳米颗粒表面的吸附。通过二维[N-H]-HSQC NMR实验比较Au和Au@SiO纳米颗粒与N-泛素的相互作用,我们观察到一些氨基酸峰出现小的化学位移扰动,以及与泛素和各自纳米颗粒的结合位点相互作用存在差异。