Mokhtar Mohamed, Alhashedi Budoor F A, Kashmery Heba A, Ahmed Nesreen S, Saleh Tamer S, Narasimharao Katabathini
Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Center, El Buhouth St., Dokki, Cairo 12622, Egypt.
ACS Omega. 2020 Mar 18;5(12):6532-6544. doi: 10.1021/acsomega.9b04212. eCollection 2020 Mar 31.
Nanosized mesoporous CuMgAl ternary oxide catalysts were prepared by thermal decomposition of CuMgAl-layered double hydroxides at 500 °C with nominal Cu/Mg/Al ratios of 1:1:1 (Cu-LDH-I), 1.5:0.5:1 (Cu-LDH-II), and 2:0:1 (Cu-LDH-III). The synthesized catalysts were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FTIR) spectroscopy, CO-TPD, and N physisorption analysis techniques. The catalytic activity of the synthesized materials was investigated for the Henry reaction between nitromethane and numerous aldehyde derivatives under ultrasonic irradiation. The three CuMgAl ternary oxide catalysts exhibited a high catalytic activity, forming nitro alcohol products with 100% atom economy. The CuMgAl-I catalyst derived from Cu-LDH-I offered high turnover frequencies (TOFs in the synthesis of all of the nitro alcohols in shorter reaction times). The superior catalytic activity of the CuMgAl-I sample is attributed to the synergistic effect between the physicochemical properties of the catalysts and ultrasonic irradiation. The HRTEM analysis of the used CuMgAl-I catalyst revealed the evidence for the cavitation collapse, which causes localized deformation and surface erosion. Moreover, the synthesized catalysts also exhibited robust sustainable activity that resisted deactivation over repeated usage. The present example of ultrasonic-assisted catalyzed organic synthesis represents a novel strategy for the solvent-free green synthesis of nitro-alcohols by the Henry reaction with 100% atom economy.
通过在500℃下热分解名义Cu/Mg/Al比为1:1:1(Cu-LDH-I)、1.5:0.5:1(Cu-LDH-II)和2:0:1(Cu-LDH-III)的CuMgAl层状双氢氧化物制备了纳米介孔CuMgAl三元氧化物催化剂。通过电感耦合等离子体原子发射光谱(ICP-AES)、X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、高分辨率透射电子显微镜(HRTEM)、傅里叶变换红外(FTIR)光谱、CO-TPD和N物理吸附分析技术对合成的催化剂进行了表征。研究了合成材料在超声辐射下对硝基甲烷与多种醛衍生物之间亨利反应的催化活性。三种CuMgAl三元氧化物催化剂表现出高催化活性,以100%的原子经济性形成硝基醇产物。源自Cu-LDH-I的CuMgAl-I催化剂具有高周转频率(在较短反应时间内合成所有硝基醇时的TOF)。CuMgAl-I样品的优异催化活性归因于催化剂的物理化学性质与超声辐射之间的协同效应。对使用过的CuMgAl-I催化剂的HRTEM分析揭示了空化崩溃的证据,这会导致局部变形和表面侵蚀。此外,合成的催化剂还表现出强大的可持续活性,在重复使用时能抵抗失活。本超声辅助催化有机合成的例子代表了一种通过亨利反应以100%原子经济性无溶剂绿色合成硝基醇的新策略。