Suppr超能文献

CD4 效应记忆 T 细胞异质性:单细胞转录组学的视角。

CD4 teff cell heterogeneity: the perspective from single-cell transcriptomics.

机构信息

Department of Immunology, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.

Department of Immunology, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.

出版信息

Curr Opin Immunol. 2020 Apr;63:61-67. doi: 10.1016/j.coi.2020.02.004. Epub 2020 Apr 4.

Abstract

Single-cell transcriptomics (scRNAseq) holds the promise to generate definitive atlases of cell types. We review scRNAseq studies of conventional CD4 αβ T cells performed in a variety of challenged contexts (infection, tumor, allergy) that aimed to parse the complexity and representativity of previously defined CD4 T cell types, lineages, and cosmologies. With a few years' experience, the field has realized the difficulties and pitfalls of scRNAseq. With the very high-dimensionality of scRNAseq data, subset definitions based on low-dimensionality marker combinations tend to fade or blur: cell types prove more complex than expected; transcripts of key defining transcripts (cytokines, chemokines) are distributed as broad and partially overlapping continua; boundaries with innate lymphocytes are blurred. Tissue location and activation, either cytokine-driven or TCR-driven, determine Teff heterogeneity in sometimes unexpected ways. Emerging techniques for lineage and trajectory tracing, and RNA-protein connections, will further help define the space of differentiated CD4 T cell heterogeneity.

摘要

单细胞转录组学 (scRNAseq) 有望生成细胞类型的明确图谱。我们回顾了在各种挑战性环境(感染、肿瘤、过敏)中进行的常规 CD4 αβ T 细胞的 scRNAseq 研究,旨在解析先前定义的 CD4 T 细胞类型、谱系和宇宙的复杂性和代表性。经过几年的经验,该领域已经意识到 scRNAseq 的困难和陷阱。由于 scRNAseq 数据的高维性,基于低维标志物组合的子集定义往往会消失或模糊:细胞类型比预期的更复杂;关键定义转录物(细胞因子、趋化因子)的转录本呈广泛且部分重叠的连续分布;与先天淋巴细胞的边界模糊。组织位置和激活,无论是细胞因子驱动还是 TCR 驱动,都以有时出人意料的方式决定 Teff 的异质性。用于谱系和轨迹追踪以及 RNA-蛋白连接的新兴技术将进一步帮助定义分化的 CD4 T 细胞异质性空间。

相似文献

6
Single-Cell Transcriptome Profiling.单细胞转录组谱分析。
Methods Mol Biol. 2021;2243:311-325. doi: 10.1007/978-1-0716-1103-6_16.

引用本文的文献

3
4
T17 cell heterogeneity and its role in tissue inflammation.T17 细胞异质性及其在组织炎症中的作用。
Nat Immunol. 2023 Jan;24(1):19-29. doi: 10.1038/s41590-022-01387-9. Epub 2023 Jan 3.
5
Distinctive populations of CD4T cells associated with vaccine efficacy.与疫苗效力相关的独特CD4T细胞群体。
iScience. 2022 Aug 13;25(9):104934. doi: 10.1016/j.isci.2022.104934. eCollection 2022 Sep 16.
9
A census of the lung: CellCards from LungMAP.肺脏普查:LungMAP 的细胞卡片。
Dev Cell. 2022 Jan 10;57(1):112-145.e2. doi: 10.1016/j.devcel.2021.11.007. Epub 2021 Dec 21.

本文引用的文献

3
Tracking the immune response with single-cell genomics.单细胞基因组学追踪免疫反应。
Vaccine. 2020 Jun 9;38(28):4487-4490. doi: 10.1016/j.vaccine.2019.11.035. Epub 2019 Dec 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验