Suppr超能文献

河岸带土地利用系统会影响农业生态系统中的土壤微生物群落和氧化亚氮排放。

Riparian land-use systems impact soil microbial communities and nitrous oxide emissions in an agro-ecosystem.

机构信息

School of Environmental Sciences, University of Guelph, Canada.

School of Environment, Resources and Sustainability, University of Waterloo, Canada.

出版信息

Sci Total Environ. 2020 Jul 1;724:138148. doi: 10.1016/j.scitotenv.2020.138148. Epub 2020 Mar 24.

Abstract

Riparian buffer systems (RBS) are considered a best management practice (BMP) in agricultural landscapes to intercept soil nitrogen (N) and phosphorus (P) leaching and surface runoff into aquatic ecosystems. However, these environmental benefits could be offset by increased greenhouse gas (GHG) emissions, including nitrous oxide (NO). The main sources of NO in soil are linked to processes which are mediated by soil microbial communities. These microorganisms play crucial roles in N-cycling and in the reduction of nitrate to N, and NO gases. This study was conducted to determine the abundance and diversity of microbial communities and functional genes associated with N-cycling and their influence on NO emissions in different riparian land-use: undisturbed natural forest (UNF), rehabilitated site (RH), grass buffer (GRB), and an adjacent agricultural land (AGR). Soil was sampled concurrently with NO emissions on July 13, 2017. DNA was extracted and used to target key N-cycling genes for N-fixation (nifH), nitrification: (amoA), and denitrification (nirS, nirK, and nosZ) via quantitative PCR, and for high throughput sequencing of total bacterial and fungal communities. Non-metric multidimensional scaling (NMDS) was used to examine microbial community composition and indicated significant differences in bacterial (p < 0.001) and fungal (p < 0.0085) communities between sites. Bacterial abundance differed significantly (p = 0.0005) between RBS and AGR sites with the highest populations occurring in the UNF (2.1 × 10 copies g dry soil), and lowest in AGR (5.3 × 10 copies g dry soil). However, the AGR site had the highest ammonia-oxidizing bacteria (AOB) abundance, indicating that nitrification is highest at this site. The abundance of the nosZ gene was highest in RH and GRB demonstrating the capacity for complete denitrification at these sites, lowering measured NO. These results suggest N-cycling microbial community dynamics differ among RBS and are influencing NO emissions in the sites investigated.

摘要

河岸带缓冲系统(RBS)被认为是农业景观中拦截土壤氮(N)和磷(P)淋溶和地表径流进入水生态系统的最佳管理实践(BMP)。然而,这些环境效益可能会被温室气体(GHG)排放的增加所抵消,包括氧化亚氮(NO)。土壤中 NO 的主要来源与受土壤微生物群落介导的过程有关。这些微生物在氮循环和硝酸盐还原为 N 和 NO 气体中起着至关重要的作用。本研究旨在确定与氮循环相关的微生物群落和功能基因的丰度和多样性及其对不同河岸带土地利用(未受干扰的天然林(UNF)、修复区(RH)、草缓冲带(GRB)和相邻农田(AGR))中 NO 排放的影响。2017 年 7 月 13 日,在同时进行土壤 NO 排放采样的过程中提取了 DNA。使用定量 PCR 靶向氮固定(nifH)、硝化(amoA)和反硝化(nirS、nirK 和 nosZ)的关键氮循环基因,并对总细菌和真菌群落进行高通量测序。非度量多维标度(NMDS)用于检查微生物群落组成,并表明站点之间的细菌(p<0.001)和真菌(p<0.0085)群落存在显著差异。RBS 和 AGR 站点之间的细菌丰度存在显著差异(p=0.0005),UNF 中的种群最高(2.1×10 拷贝 g 干土),AGR 中的种群最低(5.3×10 拷贝 g 干土)。然而,AGR 站点的氨氧化细菌(AOB)丰度最高,表明该站点的硝化作用最高。RH 和 GRB 中 nosZ 基因的丰度最高,表明这些站点具有完全反硝化的能力,降低了测量的 NO。这些结果表明,RBS 中的氮循环微生物群落动态不同,并且正在影响所研究站点的 NO 排放。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验