Geomicrobiology and Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany.
Fertilisation and Soil Matter Dynamics, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany.
ISME J. 2014 Mar;8(3):660-674. doi: 10.1038/ismej.2013.160. Epub 2013 Sep 26.
Nitrous oxide (N2O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N2O emissions. Most agricultural N2O emissions are due to increased fertilizer application. A considerable fraction of nitrogen fertilizers are converted to N2O by microbiological processes (that is, nitrification and denitrification). Soil amended with biochar (charcoal created by pyrolysis of biomass) has been demonstrated to increase crop yield, improve soil quality and affect greenhouse gas emissions, for example, reduce N2O emissions. Despite several studies on variations in the general microbial community structure due to soil biochar amendment, hitherto the specific role of the nitrogen cycling microbial community in mitigating soil N2O emissions has not been subject of systematic investigation. We performed a microcosm study with a water-saturated soil amended with different amounts (0%, 2% and 10% (w/w)) of high-temperature biochar. By quantifying the abundance and activity of functional marker genes of microbial nitrogen fixation (nifH), nitrification (amoA) and denitrification (nirK, nirS and nosZ) using quantitative PCR we found that biochar addition enhanced microbial nitrous oxide reduction and increased the abundance of microorganisms capable of N2-fixation. Soil biochar amendment increased the relative gene and transcript copy numbers of the nosZ-encoded bacterial N2O reductase, suggesting a mechanistic link to the observed reduction in N2O emissions. Our findings contribute to a better understanding of the impact of biochar on the nitrogen cycling microbial community and the consequences of soil biochar amendment for microbial nitrogen transformation processes and N2O emissions from soil.
一氧化二氮(N2O)贡献了全球温室气体排放的 8%。农业源约占人为 N2O 排放的 60%。大多数农业 N2O 排放是由于增加了化肥的应用。相当一部分氮肥料通过微生物过程(即硝化和反硝化)转化为 N2O。已经证明,土壤中添加生物炭(生物质热解产生的木炭)可以增加作物产量、改善土壤质量并影响温室气体排放,例如减少 N2O 排放。尽管有几项关于由于土壤生物炭添加而导致的一般微生物群落结构变化的研究,但迄今为止,氮循环微生物群落在减轻土壤 N2O 排放方面的特定作用尚未成为系统研究的主题。我们进行了一项微宇宙研究,用不同量(0%、2%和 10%(w/w))的高温生物炭添加到水饱和土壤中。通过使用定量 PCR 定量功能标记基因(nifH)、硝化(amoA)和反硝化(nirK、nirS 和 nosZ)微生物氮固定的丰度和活性,我们发现生物炭添加增强了微生物的氧化亚氮还原作用,并增加了能够固定氮的微生物的丰度。土壤生物炭添加增加了编码细菌 N2O 还原酶的 nosZ 基因和转录物的相对拷贝数,这表明与观察到的 N2O 排放减少存在机制联系。我们的研究结果有助于更好地理解生物炭对氮循环微生物群落的影响,以及土壤生物炭添加对微生物氮转化过程和土壤中 N2O 排放的后果。