Suppr超能文献

超高压下超硬材料二硼化铼的实验与计算研究

Experimental and Computational Studies on Superhard Material Rhenium Diboride under Ultrahigh Pressures.

作者信息

Burrage Kaleb C, Lin Chia-Min, Chen Wei-Chih, Chen Cheng-Chien, Vohra Yogesh K

机构信息

Department of Physics, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA.

出版信息

Materials (Basel). 2020 Apr 3;13(7):1657. doi: 10.3390/ma13071657.

Abstract

An emerging class of superhard materials for extreme environment applications are compounds formed by heavy transition metals with light elements. In this work, ultrahigh pressure experiments on transition metal rhenium diboride () were carried out in a diamond anvil cell under isothermal and non-hydrostatic compression. Two independent high-pressure experiments were carried out on for the first time up to a pressure of 241 GPa (volume compression = 0.731 ± 0.004), with platinum as an internal pressure standard in X-ray diffraction studies. The hexagonal phase of was stable under highest pressure, and the anisotropy between the -axis and -axis compression increases with pressure to 241 GPa. The measured equation of state (EOS) above the yield stress of is well represented by the bulk modulus = 364 GPa and its first pressure derivative = 3.53. Corresponding density-functional-theory (DFT) simulations of the EOS and elastic constants agreed well with the experimental data. DFT results indicated that becomes more ductile with enhanced tendency towards metallic bonding under compression. The DFT results also showed strong crystal anisotropy up to the maximum pressure under study. The pressure-enhanced electron density distribution along the and bond direction renders the material highly incompressible along the -axis. Our study helps to establish the fundamental basis for anisotropic compression of under ultrahigh pressures.

摘要

一类新兴的用于极端环境应用的超硬材料是由重过渡金属与轻元素形成的化合物。在这项工作中,在金刚石对顶砧中对等温非静水压缩条件下的过渡金属二硼化铼()进行了超高压实验。首次在高达241吉帕(体积压缩率 = 0.731 ± 0.004)的压力下对进行了两项独立的高压实验,在X射线衍射研究中以铂作为内压标准。的六方相在最高压力下是稳定的,并且轴和轴压缩之间的各向异性随压力增加至241吉帕。在屈服应力以上测量的状态方程(EOS)可以很好地用体积模量 = 364吉帕及其第一压力导数 = 3.53来表示。状态方程和弹性常数的相应密度泛函理论(DFT)模拟与实验数据吻合良好。DFT结果表明,在压缩下随着金属键合趋势增强而变得更具延展性。DFT结果还表明,在所研究的最大压力以下存在很强的晶体各向异性。沿键和键方向的压力增强电子密度分布使材料沿轴高度不可压缩。我们的研究有助于建立超高压下各向异性压缩的基本基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a78/7178289/6bdb01237f71/materials-13-01657-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验