Suppr超能文献

利用Wi-Fi成像技术实现下一代以身体为中心通信的隐私保护非可穿戴式占用监测系统。

Privacy-Preserving Non-Wearable Occupancy Monitoring System Exploiting Wi-Fi Imaging for Next-Generation Body Centric Communication.

作者信息

Aziz Shah Syed, Ahmad Jawad, Tahir Ahsen, Ahmed Fawad, Russel Gordon, Shah Syed Yaseen, Buchanan William, Abbasi Qammer H

机构信息

School of Computing and Mathematics, Manchester Metropolitan University, Manchester M13 9PL, UK.

School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK.

出版信息

Micromachines (Basel). 2020 Apr 3;11(4):379. doi: 10.3390/mi11040379.

Abstract

Nano-scaled structures, wireless sensing, wearable devices, and wireless communications systems are anticipated to support the development of new next-generation technologies in the near future. Exponential rise in future Radio-Frequency (RF) sensing systems have demonstrated its applications in areas such as wearable consumer electronics, remote healthcare monitoring, wireless implants, and smart buildings. In this paper, we propose a novel, non-wearable, device-free, privacy-preserving Wi-Fi imaging-based occupancy detection system for future smart buildings. The proposed system is developed using off-the-shelf non-wearable devices such as Wi-Fi router, network interface card, and an omnidirectional antenna for future body centric communication. The core idea is to detect presence of person along its activities of daily living without deploying a device on person's body. The Wi-Fi signals received using non-wearable devices are converted into time-frequency scalograms. The occupancy is detected by classifying the scalogram images using an auto-encoder neural network. In addition to occupancy detection, the deep neural network also identifies the activity performed by the occupant. Moreover, a novel encryption algorithm using Chirikov and Intertwining map-based is also proposed to encrypt the scalogram images. This feature enables secure storage of scalogram images in a database for future analysis. The classification accuracy of the proposed scheme is 91.1%.

摘要

纳米级结构、无线传感、可穿戴设备和无线通信系统有望在不久的将来支持新一代新技术的发展。未来射频(RF)传感系统的指数级增长已证明其在可穿戴消费电子、远程医疗监测、无线植入物和智能建筑等领域的应用。在本文中,我们为未来的智能建筑提出了一种新颖的、非穿戴式、免设备、保护隐私的基于Wi-Fi成像的占用检测系统。所提出的系统是使用现成的非穿戴设备开发的,如Wi-Fi路由器、网络接口卡和用于未来以身体为中心通信的全向天线。核心思想是在不将设备部署在人身体上的情况下,沿着其日常生活活动检测人的存在。使用非穿戴设备接收的Wi-Fi信号被转换为时频谱图。通过使用自动编码器神经网络对谱图图像进行分类来检测占用情况。除了占用检测外,深度神经网络还能识别占用者执行的活动。此外,还提出了一种基于Chirikov和交织映射的新型加密算法来加密谱图图像。此功能可将谱图图像安全存储在数据库中以供未来分析。所提方案的分类准确率为91.1%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a92d/7230537/014f42c6806d/micromachines-11-00379-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验