Leiro Victoria, Garcia João Pedro, Moreno Pedro M D, Spencer Ana Patrícia, Fernandez-Villamarin Marcos, Riguera Ricardo, Fernandez-Megia Eduardo, Paula Pêgo Ana
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
J Mater Chem B. 2017 Jul 7;5(25):4901-4917. doi: 10.1039/c7tb00279c. Epub 2017 May 31.
One important drawback of most of the currently used dendrimers for biomedical applications is their high stability under physiological conditions that can result in cytotoxicity or complications induced by the accumulation of non-degradable synthetic materials in the organism. Particularly in the gene therapy field, vector stability can further hinder the intracellular release of the nucleic acid from the dendriplex, consequently leading to low transfection efficiencies. Therefore, biodegradable cationic dendritic structures have been eagerly awaited. However, the development of these dendritic nanocarriers is challenging because of the undesired and/or premature degradation observed during their synthesis and/or application. Here, we report new hybrid-biodegradable, biocompatible, non-toxic, and water-soluble azide-terminated PEG-GATGE dendritic block copolymers, based on a gallic acid (GA) core and triethylene glycol (TG) butanoate arms, incorporating ester bonds (E) at the dendritic arms/shell. Their successful functionalization by "click" chemistry with unprotected alkynated amines allowed complexation and delivery of siRNA. The hydrophobic character of the GATGE building unit confers to these hydrolyzable dendritic bionanomaterials a great ability to complex, protect and mediate the cellular internalization of siRNA. Moreover, the localization of the degradation points at the dendritic periphery, close to the complexed siRNA, was found to be important for nucleic acid release from the nanoparticles, rendering a significant improvement of the transfection efficiency compared to their hydrolytically stable PEG-GATG copolymer counterparts. The present study puts forward these biodegradable PEG-dendritic block copolymers not only as suitable vectors for nucleic acids, but also as new avenues for further developments exploring their use in theranostics.
目前用于生物医学应用的大多数树枝状大分子的一个重要缺点是它们在生理条件下具有高稳定性,这可能导致细胞毒性或由于不可降解的合成材料在体内积累而引发并发症。特别是在基因治疗领域,载体稳定性会进一步阻碍核酸从树枝状复合物中释放到细胞内,从而导致转染效率低下。因此,可生物降解的阳离子树枝状结构备受期待。然而,由于在合成和/或应用过程中观察到不期望的和/或过早的降解,这些树枝状纳米载体的开发具有挑战性。在此,我们报道了一种新型的基于没食子酸(GA)核心和三甘醇(TG)丁酸酯臂的杂化可生物降解、生物相容性好、无毒且水溶性的叠氮端基PEG-GATGE树枝状嵌段共聚物,其在树枝状臂/壳处引入了酯键(E)。通过与未保护的炔基化胺进行“点击”化学成功实现功能化,使其能够络合并递送小干扰RNA(siRNA)。GATGE构建单元的疏水特性赋予这些可水解的树枝状生物纳米材料强大的络合、保护和介导siRNA细胞内化的能力。此外,发现降解点位于树枝状外围,靠近络合的siRNA,这对于从纳米颗粒中释放核酸很重要,与水解稳定的PEG-GATG共聚物对应物相比,转染效率有显著提高。本研究提出这些可生物降解的PEG-树枝状嵌段共聚物不仅是合适的核酸载体,也是探索其在治疗诊断学中应用的进一步发展的新途径。