Flores-Muñoz Carolina, Gómez Bárbara, Mery Elena, Mujica Paula, Gajardo Ivana, Córdova Claudio, Lopez-Espíndola Daniela, Durán-Aniotz Claudia, Hetz Claudio, Muñoz Pablo, Gonzalez-Jamett Arlek M, Ardiles Álvaro O
Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.
Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
Front Cell Neurosci. 2020 Mar 19;14:46. doi: 10.3389/fncel.2020.00046. eCollection 2020.
Synaptic loss induced by soluble oligomeric forms of the amyloid β peptide (sAβos) is one of the earliest events in Alzheimer's disease (AD) and is thought to be the major cause of the cognitive deficits. These abnormalities rely on defects in synaptic plasticity, a series of events manifested as activity-dependent modifications in synaptic structure and function. It has been reported that pannexin 1 (Panx1), a nonselective channel implicated in cell communication and intracellular signaling, modulates the induction of excitatory synaptic plasticity under physiological contexts and contributes to neuronal death under inflammatory conditions. Here, we decided to study the involvement of Panx1 in functional and structural defects observed in excitatory synapses of the amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic (Tg) mice, an animal model of AD. We found an age-dependent increase in the Panx1 expression that correlates with increased Aβ levels in hippocampal tissue from Tg mice. Congruently, we also observed an exacerbated Panx1 activity upon basal conditions and in response to glutamate receptor activation. The acute inhibition of Panx1 activity with the drug probenecid (PBN) did not change neurodegenerative parameters such as amyloid deposition or astrogliosis, but it significantly reduced excitatory synaptic defects in the AD model by normalizing long-term potentiation (LTP) and depression and improving dendritic arborization and spine density in hippocampal neurons of the Tg mice. These results suggest a major contribution of Panx1 in the early mechanisms leading to the synaptopathy in AD. Indeed, PBN induced a reduction in the activation of p38 mitogen-activated protein kinase (MAPK), a kinase widely implicated in the early neurotoxic signaling in AD. Our data strongly suggest that an enhanced expression and activation of Panx1 channels contribute to the Aβ-induced cascades leading to synaptic dysfunction in AD.
由淀粉样β肽的可溶性寡聚体形式(sAβos)诱导的突触丧失是阿尔茨海默病(AD)中最早出现的事件之一,并且被认为是认知缺陷的主要原因。这些异常依赖于突触可塑性的缺陷,这一系列事件表现为突触结构和功能的活动依赖性修饰。据报道,泛素连接蛋白1(Panx1)是一种参与细胞通讯和细胞内信号传导的非选择性通道,在生理环境下调节兴奋性突触可塑性的诱导,并在炎症条件下导致神经元死亡。在这里,我们决定研究Panx1在淀粉样前体蛋白(APP)/早老素1(PS1)转基因(Tg)小鼠(一种AD动物模型)的兴奋性突触中观察到的功能和结构缺陷中的作用。我们发现Tg小鼠海马组织中Panx1表达随年龄增加,这与Aβ水平升高相关。同样,我们还观察到在基础条件下以及对谷氨酸受体激活的反应中Panx1活性增强。用丙磺舒(PBN)药物急性抑制Panx1活性并没有改变神经退行性变参数,如淀粉样蛋白沉积或星形胶质细胞增生,但通过使长期增强(LTP)和抑制正常化,并改善Tg小鼠海马神经元的树突分支和棘密度,显著减少了AD模型中的兴奋性突触缺陷。这些结果表明Panx1在导致AD突触病变的早期机制中起主要作用。事实上,PBN诱导p38丝裂原活化蛋白激酶(MAPK)的激活减少,p38激酶在AD早期神经毒性信号传导中广泛涉及。我们的数据强烈表明,Panx1通道的表达和激活增强有助于Aβ诱导的级联反应,导致AD中的突触功能障碍。