Suppr超能文献

X 射线衍射探测抑制冰晶重结晶的动力学。

X-ray diffraction to probe the kinetics of ice recrystallization inhibition.

机构信息

Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, UK.

Department of Physics, University of Warwick, Gibbet Hill Road, CV4 7AL, UK.

出版信息

Analyst. 2020 May 18;145(10):3666-3677. doi: 10.1039/c9an02141h.

Abstract

Understanding the nucleation and growth of ice is crucial in fields ranging from infrastructure maintenance, to the environment, and to preserving biologics in the cold chain. Ice binding and antifreeze proteins are potent ice recrystallization inhibitors (IRI), and synthetic materials that mimic this function have emerged, which may find use in biotechnology. To evaluate IRI activity, optical microscopy tools are typically used to monitor ice grain size either by end-point measurements or as a function of time. However, these methods provide 2-dimensional information and image analysis is required to extract the data. Here we explore using wide angle X-ray scattering (WAXS/X-ray powder diffraction (XRD)) to interrogate 100's of ice crystals in 3-dimensions as a function of time. Due to the random organization of the ice crystals in the frozen sample, the number of orientations measured by XRD is proportional to the number of ice crystals, which can be measured as a function of time. This method was used to evaluate the activity for a panel of known IRI active compounds, and shows strong agreement with results obtained from cryo-microscopy, as well as being advantageous in that time-dependent ice growth is easily extracted. Diffraction analysis also confirmed, by comparing the obtained diffraction patterns of both ice binding and non-binding additives, that the observed hexagonal ice diffraction patterns obtained cannot be used to determine which crystal faces are being bound. This method may help in the discovery of new IRI active materials as well as enabling kinetic analysis of ice growth.

摘要

理解冰的成核和生长在基础设施维护、环境和冷链中保存生物制品等领域至关重要。冰结合和抗冻蛋白是有效的冰晶再结晶抑制剂(IRI),并且已经出现了模拟这种功能的合成材料,这些材料可能在生物技术中有应用。为了评估 IRI 活性,通常使用光学显微镜工具通过终点测量或作为时间的函数来监测冰晶粒尺寸。然而,这些方法提供二维信息,需要图像分析来提取数据。在这里,我们探索了使用广角 X 射线散射(WAXS/X 射线粉末衍射(XRD))来作为时间的函数在三维空间中探测数百个冰晶。由于冷冻样品中冰晶的随机组织,XRD 测量的取向数与冰晶数成正比,这可以作为时间的函数进行测量。该方法用于评估一组已知的 IRI 活性化合物的活性,与从低温显微镜获得的结果具有很强的一致性,并且具有优势,因为易于提取随时间变化的冰生长。衍射分析还通过比较冰结合和非结合添加剂的获得的衍射图案证实,观察到的获得的六方冰晶衍射图案不能用于确定哪些晶面被结合。该方法可能有助于发现新的 IRI 活性材料,并能够对冰生长进行动力学分析。

相似文献

1
X-ray diffraction to probe the kinetics of ice recrystallization inhibition.
Analyst. 2020 May 18;145(10):3666-3677. doi: 10.1039/c9an02141h.
2
Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization.
Acc Chem Res. 2018 May 15;51(5):1082-1091. doi: 10.1021/acs.accounts.7b00528. Epub 2018 Apr 17.
3
Ice recrystallization inhibition activity varies with ice-binding protein type and does not correlate with thermal hysteresis.
Cryobiology. 2021 Apr;99:28-39. doi: 10.1016/j.cryobiol.2021.01.017. Epub 2021 Jan 30.
5
Molecular recognition of methyl α-D-mannopyranoside by antifreeze (glyco)proteins.
J Am Chem Soc. 2014 Jun 25;136(25):8973-81. doi: 10.1021/ja502837t. Epub 2014 Jun 11.
6
Ice Nucleation Promotion Impact on the Ice Recrystallization Inhibition Activity of Polyols.
Biomacromolecules. 2023 Feb 13;24(2):678-689. doi: 10.1021/acs.biomac.2c01120. Epub 2023 Jan 17.
8
Polymer Self-Assembly Induced Enhancement of Ice Recrystallization Inhibition.
J Am Chem Soc. 2021 May 19;143(19):7449-7461. doi: 10.1021/jacs.1c01963. Epub 2021 May 4.
9
Facially Amphipathic Glycopolymers Inhibit Ice Recrystallization.
J Am Chem Soc. 2018 May 2;140(17):5682-5685. doi: 10.1021/jacs.8b02066. Epub 2018 Apr 19.
10
Slow Propagation of Ice Binding Limits the Ice-Recrystallization Inhibition Efficiency of PVA and Other Flexible Polymers.
J Am Chem Soc. 2020 Mar 4;142(9):4356-4366. doi: 10.1021/jacs.9b12943. Epub 2020 Feb 21.

引用本文的文献

1
Polarized Neutrons Observed Nanometer-Thick Crystalline Ice Plates in Frozen Glucose Solution.
J Phys Chem Lett. 2023 Aug 31;14(34):7638-7643. doi: 10.1021/acs.jpclett.3c01448. Epub 2023 Aug 21.
3
Polymer Self-Assembly Induced Enhancement of Ice Recrystallization Inhibition.
J Am Chem Soc. 2021 May 19;143(19):7449-7461. doi: 10.1021/jacs.1c01963. Epub 2021 May 4.

本文引用的文献

2
Site-specific conjugation of antifreeze proteins onto polymer-stabilized nanoparticles.
Polym Chem. 2019 Jun 21;10(23):2986-2990. doi: 10.1039/c8py01719k. Epub 2019 Jan 31.
3
Mimicking the Ice Recrystallization Activity of Biological Antifreezes. When is a New Polymer "Active"?
Macromol Biosci. 2019 Jul;19(7):e1900082. doi: 10.1002/mabi.201900082. Epub 2019 May 14.
4
Inhibiting Ice Recrystallization by Nanocelluloses.
Biomacromolecules. 2019 Apr 8;20(4):1667-1674. doi: 10.1021/acs.biomac.9b00027. Epub 2019 Mar 12.
5
Small-Molecule Ice Recrystallization Inhibitors Improve the Post-Thaw Function of Hematopoietic Stem and Progenitor Cells.
ACS Omega. 2016 Nov 30;1(5):1010-1018. doi: 10.1021/acsomega.6b00178. Epub 2016 Nov 28.
6
Facially Amphipathic Glycopolymers Inhibit Ice Recrystallization.
J Am Chem Soc. 2018 May 2;140(17):5682-5685. doi: 10.1021/jacs.8b02066. Epub 2018 Apr 19.
8
Polymer mimics of biomacromolecular antifreezes.
Nat Commun. 2017 Nov 16;8(1):1546. doi: 10.1038/s41467-017-01421-7.
9
An USAXS-SAXS-WAXS study of precipitate size distribution evolution in a model Ni-based alloy.
J Appl Crystallogr. 2017 May 30;50(Pt 3):734-740. doi: 10.1107/S1600576717006446. eCollection 2017 Jun 1.
10
Oxidized Quasi-Carbon Nitride Quantum Dots Inhibit Ice Growth.
Adv Mater. 2017 Jul;29(28). doi: 10.1002/adma.201606843. Epub 2017 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验