Suppr超能文献

用于控制冰核形成、生长和再结晶的仿生材料。

Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization.

作者信息

He Zhiyuan, Liu Kai, Wang Jianjun

机构信息

Key Laboratory of Green Printing , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.

School of Chemistry and Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China.

出版信息

Acc Chem Res. 2018 May 15;51(5):1082-1091. doi: 10.1021/acs.accounts.7b00528. Epub 2018 Apr 17.

Abstract

Ice formation, mainly consisting of ice nucleation, ice growth, and ice recrystallization, is ubiquitous and crucial in wide-ranging fields from cryobiology to atmospheric physics. Despite active research for more than a century, the mechanism of ice formation is still far from satisfactory. Meanwhile, nature has unique ways of controlling ice formation and can provide resourceful avenues to unravel the mechanism of ice formation. For instance, antifreeze proteins (AFPs) protect living organisms from freezing damage via controlling ice formation, for example, tuning ice nucleation, shaping ice crystals, and inhibiting ice growth and recrystallization. In addition, AFP mimics can have applications in cryopreservation of cells, tissues, and organs, food storage, and anti-icing materials. Therefore, continuous efforts have been made to understand the mechanism of AFPs and design AFP inspired materials. In this Account, we first review our recent research progress in understanding the mechanism of AFPs in controlling ice formation. A Janus effect of AFPs on ice nucleation was discovered, which was achieved via selectively tethering the ice-binding face (IBF) or the non-ice-binding face (NIBF) of AFPs to solid surfaces and investigating specifically the effect of the other face on ice nucleation. Through molecular dynamics (MD) simulation analysis, we observed ordered hexagonal ice-like water structure atop the IBF and disordered water structure atop the NIBF. Therefore, we conclude that the interfacial water plays a critical role in controlling ice formation. Next, we discuss the design and fabrication of AFP mimics with capabilities in tuning ice nucleation and controlling ice shape and growth, as well as inhibiting ice recrystallization. For example, we tuned ice nucleation via modifying solid surfaces with supercharged unfolded polypeptides (SUPs) and polyelectrolyte brushes (PBs) with different counterions. We found graphene oxide (GO) and oxidized quasi-carbon nitride quantum dots (OQCNs) had profound effects in controlling ice shape and inhibiting ice growth. We also studied the ion-specific effect on ice recrystallization inhibition (IRI) with a large variety of anions and cations. All functionalities are achieved by tuning the properties of interfacial water on these materials, which reinforces the importance of the interfacial water in controlling ice formation. Finally, we review the development of novel application-oriented materials emerging from our enhanced understanding of ice formation, for example, ultralow ice adhesion coatings with aqueous lubricating layer, cryopreservation of cells by inhibiting ice recrystallization, and two-dimensional (2D) and three-dimensional (3D) porous materials with tunable pore sizes through recrystallized ice crystal templates. This Account sheds new light on the molecular mechanism of ice formation and will inspire the design of unprecedented functional materials based on controlled ice formation.

摘要

冰的形成主要包括冰核形成、冰生长和冰重结晶,在从低温生物学到大气物理学等广泛领域中普遍存在且至关重要。尽管经过了一个多世纪的积极研究,但冰形成的机制仍远不能令人满意。与此同时,自然界有独特的控制冰形成的方式,能为揭示冰形成机制提供丰富的途径。例如,抗冻蛋白(AFPs)通过控制冰的形成来保护生物体免受冻害,比如调节冰核形成、塑造冰晶以及抑制冰生长和重结晶。此外,抗冻蛋白模拟物可应用于细胞、组织和器官的冷冻保存、食品储存以及防冰材料。因此,人们一直在不断努力去理解抗冻蛋白的机制并设计受抗冻蛋白启发的材料。在本综述中,我们首先回顾我们在理解抗冻蛋白控制冰形成机制方面的最新研究进展。发现了抗冻蛋白对冰核形成的一种两面性效应,这是通过将抗冻蛋白的冰结合面(IBF)或非冰结合面(NIBF)选择性地 tethering 到固体表面,并具体研究另一面在冰核形成上的作用来实现的。通过分子动力学(MD)模拟分析,我们观察到在冰结合面上有有序的六边形类冰状水结构,而在非冰结合面上是无序的水结构。因此,我们得出结论,界面水在控制冰形成中起着关键作用。接下来,我们讨论具有调节冰核形成、控制冰形状和生长以及抑制冰重结晶能力的抗冻蛋白模拟物的设计与制备。例如,我们通过用带不同抗衡离子的增压未折叠多肽(SUPs)和聚电解质刷(PBs)修饰固体表面来调节冰核形成。我们发现氧化石墨烯(GO)和氧化准碳氮化物量子点(OQCNs)在控制冰形状和抑制冰生长方面有显著效果。我们还研究了多种阴离子和阳离子对抑制冰重结晶(IRI)的离子特异性效应。所有这些功能都是通过调节这些材料上界面水的性质来实现的,这进一步强调了界面水在控制冰形成中的重要性。最后,我们回顾了基于我们对冰形成的深入理解而出现的新型面向应用材料的发展,例如具有水性润滑层的超低冰附着力涂层、通过抑制冰重结晶实现细胞的冷冻保存以及通过重结晶冰晶模板制备具有可调孔径的二维(2D)和三维(3D)多孔材料。本综述为冰形成的分子机制提供了新的见解,并将激发基于可控冰形成设计前所未有的功能材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验