Suppr超能文献

采用弯曲刀具路径进行原子尺度磨削时硅中的应力分布

Stress Distribution in Silicon Subjected to Atomic Scale Grinding with a Curved Tool Path.

作者信息

Fang Xudong, Kang Qiang, Ding Jianjun, Sun Lin, Maeda Ryutaro, Jiang Zhuangde

机构信息

School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an 710056, China.

出版信息

Materials (Basel). 2020 Apr 6;13(7):1710. doi: 10.3390/ma13071710.

Abstract

Molecular dynamics (MD) simulations were applied to study the fundamental mechanism of nanoscale grinding with a modeled tool trajectory of straight lines. Nevertheless, these models ignore curvature changes of actual tool paths, which need optimization to facilitate understanding of the underlying science of the machining processes. In this work, a three-dimensional MD model considering the effect of tool paths was employed to investigate distributions of stresses including hydrostatic stress, von Mises stress, normal and shear stresses during atomic grinding. Simulation results showed that average values of the stresses are greatly influenced by the radius of the tool trajectory and the grinding depth. Besides the averaged stresses, plane stress distribution was also analyzed, which was obtained by intercepting stresses on the internal planes of the workpiece. For the case of a grinding depth of 25 Å and an arc radius 40 Å, snapshots of the stresses on the X-Y, X-Z and Y-Z planes showed internal stress concentration. The results show that phase transformation occurred from α- silicon to β- silicon in the region with hydrostatic stress over 8 GPa. Moreover, lateral snapshots of the three-dimensional stress distribution are comprehensively discussed. It can be deduced from MD simulations of stress distribution in monocrystalline silicon with the designed new model that a curved tool trajectory leads to asymmetric distribution and concentration of stress during atomic-scale grinding. The analysis of stress distribution with varying curve geometries and cutting depths can aid fundamental mechanism development in nanomanufacturing and provide theoretical support for ultraprecision grinding.

摘要

采用分子动力学(MD)模拟方法,以直线型刀具轨迹模型研究纳米级磨削的基本机理。然而,这些模型忽略了实际刀具路径的曲率变化,而这需要优化,以便于理解加工过程的基础科学。在这项工作中,采用考虑刀具路径影响的三维MD模型,研究了原子级磨削过程中包括静水压力、冯·米塞斯应力、正应力和剪应力在内的应力分布。模拟结果表明,应力的平均值受刀具轨迹半径和磨削深度的影响很大。除了平均应力外,还分析了平面应力分布,该分布是通过截取工件内部平面上的应力获得的。对于磨削深度为25 Å、圆弧半径为40 Å的情况,X - Y、X - Z和Y - Z平面上的应力快照显示出内部应力集中。结果表明,在静水压力超过8 GPa的区域发生了从α - 硅到β - 硅的相变。此外,还全面讨论了三维应力分布的横向快照。从采用设计的新模型对单晶硅应力分布进行的MD模拟可以推断,在原子级磨削过程中,弯曲的刀具轨迹会导致应力的不对称分布和集中。对不同曲线几何形状和切削深度下应力分布的分析有助于纳米制造基础机理的发展,并为超精密磨削提供理论支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fd/7178638/cb4dc7bd4669/materials-13-01710-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验