Suppr超能文献

包含施密特秩为三的复哈达玛矩阵的相互无偏基。

Mutually unbiased bases containing a complex Hadamard matrix of Schmidt rank three.

作者信息

Hu Mengyao, Chen Lin, Sun Yize

机构信息

School of Mathematical Sciences, Beihang University, Beijing 100191, People's Republic of China.

International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, People's Republic of China.

出版信息

Proc Math Phys Eng Sci. 2020 Mar;476(2235):20190754. doi: 10.1098/rspa.2019.0754. Epub 2020 Mar 25.

Abstract

Constructing four six-dimensional mutually unbiased bases (MUBs) is an open problem in quantum physics and measurement. We investigate the existence of four MUBs including the identity, and a complex Hadamard matrix (CHM) of Schmidt rank three. The CHM is equivalent to a controlled unitary operation on the qubit-qutrit system via local unitary transformation  ⊗  and  ⊗ . We show that and have no zero entry, and apply it to exclude constructed examples as members of MUBs. We further show that the maximum of entangling power of controlled unitary operation is log 3 ebits. We derive the condition under which the maximum is achieved, and construct concrete examples. Our results describe the phenomenon that if a CHM of Schmidt rank three belongs to an MUB then its entangling power may not reach the maximum.

摘要

构造四个六维相互无偏基(MUBs)是量子物理与测量领域的一个开放问题。我们研究包含单位矩阵以及一个施密特秩为三的复哈达玛矩阵(CHM)的四个MUBs的存在性。通过局部酉变换(I\otimes I)和(I\otimes\sigma_x),CHM等同于量子比特 - 量子三态系统上的一个受控酉操作。我们证明(I\otimes\sigma_x)没有零元素,并将其用于排除作为MUBs成员的构造示例。我们进一步表明受控酉操作的最大纠缠能力为(\log 3) 量子比特。我们推导了达到最大值的条件,并构造了具体示例。我们的结果描述了这样一种现象:如果一个施密特秩为三的CHM属于一个MUB,那么它的纠缠能力可能无法达到最大值。

相似文献

1
2
Entangling and disentangling power of unitary transformations are not equal.酉变换的纠缠和解纠缠能力并不相等。
Phys Rev Lett. 2009 Jul 17;103(3):030501. doi: 10.1103/PhysRevLett.103.030501. Epub 2009 Jul 14.
5
Entanglement cost of implementing controlled-unitary operations.实现受控幺正操作的纠缠代价。
Phys Rev Lett. 2011 Oct 28;107(18):180501. doi: 10.1103/PhysRevLett.107.180501. Epub 2011 Oct 25.
7
Experimental Demonstration of Inequivalent Mutually Unbiased Bases.不等价相互无偏基的实验证明。
Phys Rev Lett. 2024 Feb 23;132(8):080202. doi: 10.1103/PhysRevLett.132.080202.
8
Universal Steering Criteria.通用转向标准。
Phys Rev Lett. 2016 Feb 19;116(7):070403. doi: 10.1103/PhysRevLett.116.070403. Epub 2016 Feb 18.
10
Quantifying Measurement Incompatibility of Mutually Unbiased Bases.量化相互无偏基的测量失协
Phys Rev Lett. 2019 Feb 8;122(5):050402. doi: 10.1103/PhysRevLett.122.050402.

本文引用的文献

1
Quantifying Measurement Incompatibility of Mutually Unbiased Bases.量化相互无偏基的测量失协
Phys Rev Lett. 2019 Feb 8;122(5):050402. doi: 10.1103/PhysRevLett.122.050402.
2
Universal Steering Criteria.通用转向标准。
Phys Rev Lett. 2016 Feb 19;116(7):070403. doi: 10.1103/PhysRevLett.116.070403. Epub 2016 Feb 18.
3
Entangling and disentangling power of unitary transformations are not equal.酉变换的纠缠和解纠缠能力并不相等。
Phys Rev Lett. 2009 Jul 17;103(3):030501. doi: 10.1103/PhysRevLett.103.030501. Epub 2009 Jul 14.
4
UNITARY OPERATOR BASES.酉算子基
Proc Natl Acad Sci U S A. 1960 Apr;46(4):570-9. doi: 10.1073/pnas.46.4.570.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验