Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150, B1613GSX, Los Polvorines, Buenos Aires, Argentina.
Department of Chemistry, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, UT, 84112, USA.
Anal Bioanal Chem. 2020 Sep;412(24):6449-6457. doi: 10.1007/s00216-020-02620-w. Epub 2020 Apr 8.
The assessment of water quality is critical to implement preventive and emergency interventions aimed to limit/avoid environmental contamination and human exposure to toxic compounds. While established high-resolution techniques allow quantitative and qualitative determination of contaminants, their widespread application is not feasible due to cost, time, and need for trained personnel. In this context, the development of easy-to-implement approaches for preliminary detection of contaminants is of the utmost importance. Herein, a portable self-powered microbial electrochemical sensor enabling online monitoring of Cr(VI) is reported. The biosensor employs a bio-inspired redox mediating system to allow extracellular electron transfer between a bacterial isolate from chromium-contaminated environments and the electrode, providing a clear response to Cr(VI) presence. The biosensor shows good linearity (R = 0.983) and a limit of detection of 2.4 mg L Cr(VI), with a sensitivity of 0.31 ± 0.02 μA cm mgCr(VI) L. The presented microbial bioanode architecture enhanced biosensor performance thanks to the improved "electrical wiring" between biological entities and the abiotic electrode surface. This approach could be easily implemented in engineered electrode surfaces, such as paper-based multi-anodes that maximize bacterial colonization, further improving biosensor response. Graphical abstract.
水质评估对于实施预防和应急措施至关重要,这些措施旨在限制/避免环境污染和人类暴露于有毒化合物。虽然已有的高分辨率技术可以定量和定性地确定污染物,但由于成本、时间和对训练有素的人员的需求,这些技术无法广泛应用。在这种情况下,开发易于实施的方法来初步检测污染物至关重要。本文报道了一种可用于在线监测六价铬的便携式自供电微生物电化学传感器。该生物传感器采用生物启发的氧化还原介体系统,允许来自铬污染环境的细菌与电极之间进行细胞外电子转移,从而对六价铬的存在产生清晰的响应。该生物传感器表现出良好的线性(R=0.983)和 2.4mg/L 的检测限,灵敏度为 0.31±0.02μA·cm·mgCr(VI) L。所提出的微生物生物阳极结构通过改善生物实体与非生物电极表面之间的“电气布线”来提高生物传感器的性能。这种方法可以很容易地应用于工程电极表面,例如最大化细菌定植的基于纸张的多阳极,从而进一步提高生物传感器的响应。