Department of Chemistry, University of California, Irvine, California 92697-2025, United States.
Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States.
Acc Chem Res. 2020 Apr 21;53(4):863-874. doi: 10.1021/acs.accounts.0c00014. Epub 2020 Apr 9.
Crystallins are transparent, refractive proteins that contribute to the focusing power of the vertebrate eye lens. These proteins are extremely soluble and resist aggregation for decades, even under crowded conditions. Crystallins have evolved to avoid strong interprotein interactions and have unusual hydration properties. Crystallin aggregation resulting from mutation, damage, or aging can lead to cataract, a disease state characterized by opacity of the lens.Different aggregation mechanisms can occur, following multiple pathways and leading to aggregates with varied morphologies. Studies of variant proteins found in individuals with childhood-onset cataract have provided insight into the molecular factors underlying crystallin stability and solubility. Modulation of exposed hydrophobic surface is critical, as is preventing specific intermolecular interactions that could provide nucleation sites for aggregation. Biophysical measurements and structural biology techniques are beginning to provide a detailed picture of how crystallins crowd into the lens, providing high refractivity while avoiding excessively tight binding that would lead to aggregation.Despite the central biological importance of refractivity, relatively few experimental measurements have been made for lens crystallins. Our work and that of others have shown that hydration is important to the high refractive index of crystallin proteins, as are interactions between pairs of aromatic residues and potentially other specific structural features.This Account describes our efforts to understand both the functional and disease states of vertebrate eye lens crystallins, particularly the γ-crystallins. We use a variety of biophysical techniques, notably NMR spectroscopy, to investigate crystallin stability and solubility. In the first section, we describe efforts to understand the relative stability and aggregation propensity of different γS-crystallin variants. The second section focuses on interactions of these proteins with the holdase chaperone αB-crystallin. The third, fourth, and fifth sections explore different modes of aggregation available to crystallin proteins, and the final section highlights the importance of refractive index and the sometimes conflicting demands of selection for refractivity and solubility.
晶状蛋白是透明的、有折射性的蛋白质,有助于脊椎动物眼球晶状体的聚焦能力。这些蛋白质具有极高的可溶性,在几十年甚至在拥挤的条件下也能抵抗聚集。晶状蛋白的进化是为了避免强烈的蛋白间相互作用,并具有不寻常的水合特性。由于突变、损伤或衰老,晶状蛋白的聚集可能导致白内障,这是一种晶状体不透明的疾病状态。不同的聚集机制可能会发生,遵循多种途径,并导致具有不同形态的聚集体。对在儿童期发病的白内障个体中发现的变体蛋白的研究,为晶状蛋白稳定性和可溶性的分子因素提供了深入了解。暴露的疏水面的调制是至关重要的,因为防止特定的分子间相互作用是聚集的核化位点。生物物理测量和结构生物学技术开始提供详细的晶状蛋白如何在晶状体中聚集的画面,提供高折射性,同时避免过度紧密的结合,这将导致聚集。尽管折射性具有重要的生物学意义,但相对较少的实验测量已经对晶状体晶状蛋白进行了。我们的工作和其他人的工作表明,水合作用对晶状蛋白的高折射率很重要,而芳香族残基之间的相互作用以及潜在的其他特定结构特征也很重要。本综述描述了我们理解脊椎动物眼晶状体晶状蛋白的功能和疾病状态的努力,特别是γ-晶状蛋白。我们使用各种生物物理技术,特别是 NMR 光谱学,来研究晶状蛋白的稳定性和可溶性。在第一节中,我们描述了理解不同γS-晶状蛋白变体的相对稳定性和聚集倾向的努力。第二节重点介绍了这些蛋白质与热休克蛋白伴侣αB-晶状蛋白的相互作用。第三、四和五节探讨了晶状蛋白可用的不同聚集模式,最后一节强调了折射率的重要性以及折射率和可溶性的选择有时是相互矛盾的。