Kalitnik Aleksandra, Lassota Anna, Polańska Oliwia, Gąsior-Głogowska Marlena, Szefczyk Monika, Barbach Agnieszka, Chilimoniuk Jarosław, Jęśkowiak-Kossakowska Izabela, Wojciechowska Alicja W, Wojciechowski Jakub W, Szulc Natalia, Kotulska Małgorzata, Burdukiewicz Michał
Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wrocław, Poland.
School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
Protein Sci. 2025 Jun;34(6):e70151. doi: 10.1002/pro.70151.
Interactions between amyloid proteins represent the cornerstone of various pathogenic pathways, including prion conversion and co-development of distinct kinds of systemic amyloidosis. Various experimental methodologies provide insights into the effects of such cross-interactions on amyloid self-assembly, which range from acceleration to complete inhibition. Here, we present a comprehensive review of experimental methods most commonly used to study amyloid cross-interactions both in vitro and in vivo, such as fluorescence-based techniques, high-resolution imaging, and spectroscopic methods. Although each method provides distinct information on amyloid interactions, we highlight that no method can fully capture the complexity of this process. In order to achieve an exhaustive portrayal, it is necessary to employ a hybrid strategy combining different experimental techniques. A core set of fluorescence methods (e.g., thioflavin T) and high-resolution imaging techniques (e.g., atomic force microscopy or Cryo-EM) are required to verify the lack of self-assembly or alterations in fibril morphology. At the same time, immuno-electron microscopy, mass spectrometry, or solid-state NMR can confirm the presence of heterotypic fibrils.
淀粉样蛋白之间的相互作用是各种致病途径的基石,包括朊病毒转化和不同类型系统性淀粉样变性的共同发展。各种实验方法为这种交叉相互作用对淀粉样蛋白自组装的影响提供了见解,其影响范围从加速到完全抑制。在此,我们全面综述了体外和体内研究淀粉样蛋白交叉相互作用最常用的实验方法,如基于荧光的技术、高分辨率成像和光谱方法。尽管每种方法都能提供关于淀粉样蛋白相互作用的独特信息,但我们强调没有一种方法能够完全捕捉这一过程的复杂性。为了实现详尽的描述,有必要采用结合不同实验技术的混合策略。需要一组核心的荧光方法(如硫黄素T)和高分辨率成像技术(如原子力显微镜或冷冻电镜)来验证是否缺乏自组装或原纤维形态的改变。同时,免疫电子显微镜、质谱或固态核磁共振可以确认异型原纤维的存在。