Cardiovascular Prevention and Rehabilitation Centre, Université de Montréal, Montréal Heart Institute Research Centre, Montréal, Canada.
School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, 200 Lees Ave, Ottawa, Canada.
J Physiol. 2020 Jul;598(13):2607-2619. doi: 10.1113/JP279447. Epub 2020 May 16.
When exercise was prescribed to elicit a fixed evaporative heat balance requirement (E ), no differences in steady-state sweat rates were observed with different absolute oesophageal and/or skin temperatures, secondary to differences in time of the day (i.e. morning (AM) vs. afternoon (PM)) and ambient temperature (i.e. 23°C vs. 33°C). Exercise at a fixed metabolic heat production (H ), but a different E (due to differences in air temperature), yielded higher steady-state sweat rates with a higher E , irrespective of absolute oesophageal temperature. Circadian rhythm did not alter the change in core temperature prior to the onset for sudomotor activation, nor the thermosensitivity, resulting in similar cumulative whole-body sweat rates irrespective of time of day at a fixed E . Collectively, these data indicate that during exercise in a compensable environment, steady-state sudomotor responses are influenced by E rather than absolute core and skin temperatures, or H .
The present study sought to determine whether absolute core temperature (modified via diurnal variation) and absolute skin temperature (modified by different air temperatures (T )) alters the steady-state sweating response to exercise at a fixed evaporative heat balance requirement (E ). Ten males exercised for 60 min on six occasions. Three T /heat production (H ) combinations (23°C/525 W, 33°C/400 W, 33˚C/525 W) were completed in the morning (08.00 h, AM) and afternoon (16.00 h, PM), to yield: (1) the same E (200 or 275 W·m ) with different absolute core temperatures (AM vs. PM); (2) the same E (200 W·m ) with different skin temperatures (T : 23˚C vs. 33˚C); (3) the same heat production (525 W) with different E (200 vs. 275 W·m ). Oesophageal temperature (T ), local sweat rate (LSR) on the arm and upper-back, and whole-body sweat rate (WBSR) were measured. Steady-state T was always higher in PM versus AM at an E of 200 W·m (23°C, P = 0.001; 33°C, P = 0.004) and 275 W·m , (33°C, P = 0.001). However steady-state mean LSR (200 W·m /23°C: P = 0.25; 200 W·m /33°C: P = 0.86; 275 W·m /33°C: P = 0.53) and WBSR (200 W·m /23°C: P = 0.79; 200 W·m /33°C: P = 0.48; 275W·m /33°C: P = 0.32) were similar. When E was matched (200 W·m ) with different T (23°C vs. 33°C), steady-state LSR (P > 0.17) and WBSR (P > 0.93) were similar despite different skin temperatures. For the same H (525 W) but different E (200 vs. 275 W·m ), mean LSR (P < 0.001), and WBSR (P < 0.001) were higher with a greater E . Collectively, steady-state sweating during exercise is altered by E but not T , skin temperature, or H .
当运动被规定以产生固定的蒸发散热平衡需求 (E) 时,由于一天中的时间(即上午 (AM) 与下午 (PM)) 和环境温度(即 23°C 与 33°C)的差异,不同的食管和/或皮肤绝对温度并不会导致稳态出汗率的差异。在固定代谢产热 (H) 下进行运动,但由于空气温度不同导致 E 不同,会导致更高的稳态出汗率,E 越高,无论食管绝对温度如何。昼夜节律并不会改变在出汗开始前核心温度的变化,也不会改变热敏性,因此在固定 E 时,无论一天中的时间如何,累积全身出汗率相似。这些数据表明,在可补偿环境中进行运动时,稳态出汗反应受 E 的影响,而不是受绝对核心和皮肤温度或 H 的影响。
本研究旨在确定绝对核心温度(通过昼夜变化进行修正)和绝对皮肤温度(通过不同的空气温度(T)进行修正)是否会改变在固定蒸发散热平衡需求 (E) 下运动时的稳态出汗反应。十名男性在六次运动中进行了 60 分钟的运动。三种 T/产热 (H) 组合(23°C/525 W、33°C/400 W、33°C/525 W)在早上(08.00 h,AM)和下午(16.00 h,PM)完成,以产生:(1)相同的 E(200 或 275 W·m),但绝对核心温度不同(AM 与 PM);(2)相同的 E(200 W·m),但皮肤温度不同(T:23°C 与 33°C);(3)相同的产热(525 W),但 E 不同(200 与 275 W·m)。测量食管温度 (T)、手臂和上背部的局部出汗率 (LSR) 和全身出汗率 (WBSR)。在 E 为 200 W·m 时,PM 中的稳态 T 始终高于 AM(23°C,P=0.001;33°C,P=0.004),而在 E 为 275 W·m 时也是如此(33°C,P=0.001)。然而,稳态平均 LSR(200 W·m/23°C:P=0.25;200 W·m/33°C:P=0.86;275 W·m/33°C:P=0.53)和 WBSR(200 W·m/23°C:P=0.79;200 W·m/33°C:P=0.48;275 W·m/33°C:P=0.32)相似。当 E 匹配(200 W·m)时,T 不同(23°C 与 33°C),尽管皮肤温度不同,但稳态 LSR(P>0.17)和 WBSR(P>0.93)相似。对于相同的 H(525 W)但 E 不同(200 与 275 W·m),平均 LSR(P<0.001)和 WBSR(P<0.001)随着 E 的增加而增加。总的来说,运动期间的稳态出汗受 E 的影响,而不是 T、皮肤温度或 H。