Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129.
J Biol Chem. 2020 May 22;295(21):7235-7248. doi: 10.1074/jbc.RA120.012646. Epub 2020 Apr 9.
The mitochondrion of malaria parasites contains several clinically validated drug targets. Within spp., the causative agents of malaria, the mitochondrial DNA (mtDNA) is only 6 kb long, being the smallest mitochondrial genome among all eukaryotes. The mtDNA encodes only three proteins of the mitochondrial electron transport chain and ∼27 small, fragmented rRNA genes having lengths of 22-195 nucleotides. The rRNA fragments are thought to form a mitochondrial ribosome (mitoribosome), together with ribosomal proteins imported from the cytosol. The mitoribosome of is essential for maintenance of the mitochondrial membrane potential and parasite viability. However, the role of the mitoribosome in sustaining the metabolic status of the parasite mitochondrion remains unclear. The small ribosomal subunit in has 14 annotated mitoribosomal proteins, and employing a CRISPR/Cas9-based conditional knockdown tool, here we verified the location and tested the essentiality of three candidates (PfmtRPS12, PfmtRPS17, and PfmtRPS18). Using immuno-EM, we provide evidence that the mitoribosome is closely associated with the mitochondrial inner membrane. Upon knockdown of the mitoribosome, parasites became hypersensitive to inhibitors targeting mitochondrial Complex III (), dihydroorotate dehydrogenase (DHOD), and the FF-ATP synthase complex. Furthermore, the mitoribosome knockdown blocked the pyrimidine biosynthesis pathway and reduced the cellular pool of pyrimidine nucleotides. These results suggest that disruption of the mitoribosome compromises the metabolic capacity of the mitochondrion, rendering the parasite hypersensitive to a panel of inhibitors that target mitochondrial functions.
疟原虫的线粒体包含几个经过临床验证的药物靶点。在 spp. 中,疟原虫的病原体,线粒体 DNA(mtDNA)只有 6kb 长,是所有真核生物中最小的线粒体基因组。mtDNA 仅编码线粒体电子传递链的三种蛋白质和约 27 个小的、碎片化的 rRNA 基因,长度为 22-195 个核苷酸。这些 rRNA 片段被认为与从细胞质中导入的核糖体蛋白一起形成线粒体核糖体(mitoribosome)。 的 mitoribosome 对于维持线粒体膜电位和寄生虫活力是必不可少的。然而,mitoribosome 在维持寄生虫线粒体代谢状态方面的作用仍不清楚。 的小核糖体亚基有 14 个注释的 mitoribosomal 蛋白,我们使用基于 CRISPR/Cas9 的条件敲低工具,验证了三个候选蛋白(PfmtRPS12、PfmtRPS17 和 PfmtRPS18)的位置和必需性。通过免疫电镜,我们提供了证据表明 mitoribosome 与线粒体内膜密切相关。在敲低 mitoribosome 后,寄生虫对靶向线粒体复合物 III()、二氢乳清酸脱氢酶(DHOD)和 FF-ATP 合酶复合物的抑制剂变得更加敏感。此外,mitoribosome 敲低阻断了嘧啶生物合成途径并减少了嘧啶核苷酸的细胞池。这些结果表明,破坏 mitoribosome 会损害线粒体的代谢能力,使寄生虫对靶向线粒体功能的一系列抑制剂变得敏感。