Renaud Estelle, Baudry Emmanuelle, Bessa-Gomes Carmen
Ecologie Systématique Evolution CNRS AgroParisTech Université Paris-Saclay Orsay France.
Ecol Evol. 2020 Mar 6;10(7):3248-3259. doi: 10.1002/ece3.6060. eCollection 2020 Apr.
Ecologists are increasingly interested in plant-pollinator networks that synthesize in a single object the species and the interactions linking them within their ecological context. Numerous indices have been developed to describe the structural properties and resilience of these networks, but currently, these indices are calculated for a network resolved to the species level, thus preventing the full exploitation of numerous datasets with a lower taxonomic resolution. Here, we used datasets from the literature to study whether taxonomic resolution has an impact on the properties of plant-pollinator networks.For a set of 41 plant-pollinator networks from the literature, we calculated nine network index values at three different taxonomic resolutions: species, genus, and family. We used nine common indices assessing the structural properties or resilience of networks: nestedness (estimated using the nestedness index based on overlap and decreasing fill [NODF], weighted NODF, discrepancy [BR], and spectral radius [SR]), connectance, modularity, robustness to species loss, motifs frequencies, and normalized degree.We observed that modifying the taxonomic resolution of these networks significantly changes the absolute values of the indices that describe their properties, except for the spectral radius and robustness. After the standardization of indices measuring nestedness with the -score, three indices-NODF, BR, and SR for binary matrices-are not significantly different at different taxonomic resolutions. Finally, the relative values of all indices are strongly conserved at different taxonomic resolutions.We conclude that it is possible to meaningfully estimate the properties of plant-pollinator interaction networks with a taxonomic resolution lower than the species level. We would advise using either the SR or robustness on untransformed data, or the NODF, discrepancy, or SR (for weighted networks only) on -scores. Additionally, connectance and modularity can be compared between low taxonomic resolution networks using the rank instead of the absolute values.
生态学家对植物-传粉者网络越来越感兴趣,这种网络在一个单一对象中综合了物种以及在其生态背景下将它们联系起来的相互作用。已经开发了许多指数来描述这些网络的结构特性和恢复力,但目前,这些指数是针对解析到物种水平的网络计算的,因此阻碍了对许多分类分辨率较低的数据集的充分利用。在这里,我们使用文献中的数据集来研究分类分辨率是否对植物-传粉者网络的特性有影响。对于文献中的一组41个植物-传粉者网络,我们在三种不同的分类分辨率下计算了九个网络指数值:物种、属和科。我们使用九个常用指数来评估网络的结构特性或恢复力:嵌套性(使用基于重叠和递减填充的嵌套性指数 [NODF]、加权NODF、差异 [BR] 和谱半径 [SR] 进行估计)、连通性、模块性、对物种丧失的稳健性、基序频率和标准化度。我们观察到,改变这些网络的分类分辨率会显著改变描述其特性的指数的绝对值,但谱半径和稳健性除外。在用z分数对测量嵌套性的指数进行标准化后,对于二元矩阵的三个指数——NODF、BR和SR——在不同的分类分辨率下没有显著差异。最后,所有指数的相对值在不同的分类分辨率下都得到了强烈的保留。我们得出结论,有可能用低于物种水平的分类分辨率有意义地估计植物-传粉者相互作用网络的特性。我们建议对未转换的数据使用SR或稳健性,或者对z分数使用NODF、差异或SR(仅适用于加权网络)。此外,对于低分类分辨率的网络,可以使用排名而不是绝对值来比较连通性和模块性。