Shaerzadeh Fatemeh, Phan Leah, Miller Douglas, Dacquel Maxwell, Hachmeister William, Hansen Carissa, Bechtle Alexandra, Tu Duan, Martcheva Maia, Foster Thomas C, Kumar Ashok, Streit Wolfgang J, Khoshbouei Habibeh
Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA.
Department of Mathematics, University of Florida College of Medicine, Gainesville, Florida, USA.
Glia. 2020 Nov;68(11):2228-2245. doi: 10.1002/glia.23834. Epub 2020 Apr 10.
During aging humans lose midbrain dopamine neurons, but not all dopamine regions exhibit vulnerability to neurodegeneration. Microglia maintain tissue homeostasis and neuronal support, but microglia become senescent and likely lose some of their functional abilities. Since aging is the greatest risk factor for Parkinson's disease, we hypothesized that aging-related changes in microglia and neurons occur in the vulnerable substantia nigra pars compacta (SNc) but not the ventral tegmental area (VTA). We conducted stereological analyses to enumerate microglia and dopaminergic neurons in the SNc and VTA of 1-, 6-, 9-, 18-, and 24-month-old C57BL/J6 mice using sections double-stained with tyrosine hydroxylase (TH) and Iba1. Both brain regions show an increase in microglia with aging, whereas numbers of TH+ cells show no significant change after 9 months of age in SNc and 6 months in VTA. Morphometric analyses reveal reduced microglial complexity and projection area while cell body size increases with aging. Contact sites between microglia and dopaminergic neurons in both regions increase with aging, suggesting increased microglial support/surveillance of dopamine neurons. To assess neurotrophin expression in dopaminergic neurons, BDNF and TH mRNA were quantified. Results show that the ratio of BDNF to TH decreases in the SNc, but not the VTA. Gait analysis indicates subtle, aging-dependent changes in gait indices. In conclusion, increases in microglial cell number, ratio of microglia to dopamine neurons, and contact sites suggest that innate biological mechanisms compensate for the aging-dependent decline in microglia morphological complexity (senescence) to ensure continued neuronal support in the SNc and VTA.
在衰老过程中,人类会失去中脑多巴胺神经元,但并非所有多巴胺区域都易发生神经退行性变。小胶质细胞维持组织稳态并支持神经元,但小胶质细胞会衰老并可能丧失一些功能能力。由于衰老是帕金森病的最大风险因素,我们推测小胶质细胞和神经元中与衰老相关的变化发生在易损的黑质致密部(SNc),而非腹侧被盖区(VTA)。我们进行了体视学分析,以使用酪氨酸羟化酶(TH)和离子钙结合衔接分子1(Iba1)双重染色的切片来计数1、6、9、18和24月龄C57BL/J6小鼠SNc和VTA中的小胶质细胞和多巴胺能神经元。两个脑区的小胶质细胞数量均随衰老增加,而SNc中9月龄后以及VTA中6月龄后TH+细胞数量无显著变化。形态计量学分析显示,随着衰老,小胶质细胞的复杂性和投射面积降低,而细胞体大小增加。两个区域中小胶质细胞与多巴胺能神经元之间的接触位点随衰老增加,表明小胶质细胞对多巴胺能神经元的支持/监测增加。为了评估多巴胺能神经元中的神经营养因子表达,对脑源性神经营养因子(BDNF)和TH mRNA进行了定量。结果显示,SNc中BDNF与TH的比率降低,但VTA中未降低。步态分析表明步态指标存在细微的、与衰老相关的变化。总之,小胶质细胞数量增加、小胶质细胞与多巴胺能神经元的比率增加以及接触位点增加表明,先天性生物学机制可补偿小胶质细胞形态复杂性(衰老)中与衰老相关的下降,以确保在SNc和VTA中持续为神经元提供支持。